
Efficient and simple generation of random simple

connected graphs with prescribed degree sequence
Fabien Viger1,2, Matthieu Latapy2

{fabien,latapy}@liafa.jussieu.fr

Abstract. We address here the problem of generating random graphs
uniformly from the set of simple connected graphs having a prescribed de-
gree sequence. Our goal is to provide an algorithm designed for practical
use both because of its ability to generate very large graphs (efficiency)
and because it is easy to implement (simplicity).

We focus on a family of heuristics for which we prove optimality con-
ditions, and show how this optimality can be reached in practice. We
then propose a different approach, specifically designed for typical real-
world degree distributions, which outperforms the first one. Assuming a
conjecture, we finally obtain an O(n log n) algorithm, which, in spite of
being very simple, improves the best known complexity.

1 Introduction

Recently, it appeared that the degree distribution of most real-world
complex networks is well approximated by a power law, and that this
unexpected feature has a crucial impact on many phenomena of inter-
est [5]. Since then, many models have been introduced to capture this
feature. In particular, the Molloy and Reed model [13], on which we
will focus, generates a random graph with prescribed degree sequence in
linear time. However, this model produces graphs that are neither sim-
ple3 nor connected. To bypass this problem, one generally simply removes
multiple edges and loops, and then keeps only the largest connected com-
ponent. Apart from the expected size of this component [14,2], very little
is known about the impact of these removals on the obtained graphs, on
their degree distribution and on the simulations processed using them.
The problem we address here is the following: given a degree sequence,
we want to generate a random simple connected graph having exactly
this degree sequence. Moreover, we want to be able to generate very
large such graphs, typically with more than one million vertices, as often
needed in simulations.

Although it has been widely investigated, it is still an open problem to
directly generate such a random graph, or even to enumerate them in
polynomial time, even without the connectivity requirement [11,12].
In this paper, we will first present the best solution proposed so far [6,12],
discussing both theoretical and practical considerations. We will then

1 LIP6, University Pierre and Marie Curie, 4 place Jussieu, 75005 Paris
2 LIAFA, University Denis Diderot, 2 place Jussieu, 75005 Paris
3 A simple graph has neither multiple edges, i.e. several edges binding the same pair

of vertices, nor loops, i.e. edges binding a vertex to itself.

deepen the study of this algorithm, which will lead us to an improvement
that makes it optimal among its family. Furthermore, we will propose a
new approach solving the problem in O(n log n) time, and being very
simple to implement.

2 Context

The Markov chain Monte-Carlo algorithm

Several techniques have been proposed to solve the problem we address.
We will focus here on the Markov chain Monte-Carlo algorithm [6],
pointed out recently by an extensive study [12] as the most efficient
one.
The generation process is composed of three main steps:

1. Realize the sequence: generate a simple graph that matches the
degree sequence,

2. Connect this graph, without changing its degrees, and
3. Shuffle the edges to make it random, while keeping it connected

and simple.

The Havel-Hakimi algorithm [8,7] solves the first step in linear time and
space. A result of Erdös and Gallai [4] shows that this algorithm succeeds
if and only if the degree sequence is realizable.
The second step is achieved by swapping edges to merge separated con-
nected components into a single connected component, following a well-
known graph theory algorithm [3,15]. Its time and space complexities are
also linear.

A

B C C

D

B

AD

Fig. 1. Edge swap

The third step is achieved by randomly swapping edges of the graph,
checking at each step that we keep the graph simple and connected.
Given the graph Gt at some step t, we pick two edges at random, and
then we swap them as shown in Figure 1, obtaining another graph G′

with the same degrees. If G′ is still simple and connected, we consider
the swap as valid : Gt+1 = G′. Otherwise, we reject the swap: Gt+1 = Gt

This algorithm is a Markov chain where the space S is the set of all sim-
ple connected graphs with the given degree sequence, the initial state
G0 is the graph obtained by the first two steps, and the transition
Gi → Gj has probability 1

m(m−1)
if there exists an edge swap that trans-

forms Gi in Gj . If there are no such swap, this transition has probability

0 (note that the probability of the transition Gi → Gi is given by the
number of invalid swaps on Gi divided by m(m− 1)).
We will use the following known results:

Theorem 1 This Markov chain is irreducible [15], symmetric [6], and
aperiodic [6].

Corollary 2 The Markov chain converges to the uniform distribution
on every states of its space, i.e. all graphs having the wanted properties.

These results show that, in order to generate a random graph, it is suf-
ficient to do enough transitions. No formal result is known about the
convergence speed of the Markov chain, i.e. the required number of tran-
sitions. However, massive experiments [6,12] applied the shuffle process
with an extremely biased G0 and showed clearly that O(m) edge swaps
are sufficient, by comparing a large set of non-trivial metrics (such as
the diameter, the flow, and so on) over the sampled graphs and ran-
dom graphs. Moreover, we proved4 that for any non-ill shaped4 degree
distribution, the ratio of valid edge swaps is greater than some positive
constant, so that O(m) transitions are sufficient to ensure Ω(m) swaps
to be done. Therefore, we will assume the following:

Empirical Result 1 [12,6] The Markov chain converges after O(m)
transitions.

Complexity

The first two steps of the random generation (realization of the degree
sequence and connection of the graph) are done in O(m) time and space.
Using hash tables for the adjacency lists, each transition may be done in
O(1) time, to which we must add the connectivity tests that take O(m)
time per transition. Thus, the total time complexity for the shuffle is
quadratic:

Cnaive = O(m2) (1)

Using the structures described in [9,10,17] to maintain connectivity in
dynamic graphs, one may reduce this complexity to the much smaller :

Cdynamic = O
(

m log n(log log n)3
)

(2)

Notice however that these structures are quite intricate, and that the
constants are large for both time and space complexities. The naive al-
gorithm, despite the fact that it runs in O(m2) time, is therefore generally
used in practice since it has the advantage of being extremely easy to
implement. Our contribution in this paper will be to show how it can be
significantly improved while keeping it very simple, and that it can even
outperform the dynamical algorithm.

4 All the proofs, and more details may be found in the full version[18]

Speed-up and the Gkantsidis et al. heuristics

Gkantsidis et al. proposed a simple way to speed-up the naive imple-
mentation [6]: instead of running a connectivity test for each transition,
they do it every T transitions, for some integer T ≥ 1 called the speed-up
window. If the graph obtained after these T transitions is not connected
anymore, the T transitions are cancelled.
They proved that this process still converges to the uniform distribu-
tion, although it is no longer composed of a single Markov chain but
of a concatenation of Markov chains [6]. The global time complexity of
connectivity tests Cconn is reduced by a factor T , but at the same time
the swaps are more likely to get cancelled: with T swaps in a row, the
graph has more chances to get disconnected than with a single one. Let
us introduce the following quantity:

Definition 1 (Success rate) The success rate r(T) of the speed-up at
a given step is the probability that the graph obtained after T swaps is
still connected.

The shuffle process now requires O(m/r(T)) transitions. The time com-
plexity therefore becomes:

CGkan = O

(

r(T)−1

(

m +
m2

T

))

(3)

Notice that there is a trade-off between the idea of reducing the con-
nectivity test complexity and the increase of the required number of
transitions. To bypass this problem, Gkantsidis et al. used the following
heuristics:

Heuristics 1 (Gkantsidis et al. heuristics) IF the graph got dis-
connected after T swaps THEN T ← T/2 ELSE T ← T + 1

3 More from the Gkantsidis et al. heuristics

The problem we address now is to estimate the efficiency of the Gkant-
sidis heuristics. First, we introduce a framework to evaluate the ideal
value for the window T . Then, we analyze the behavior of the Gkant-
sidis et al. heuristics, and get an estimation of the difference between the
speed-up factor they obtain and the optimal speed-up factor. We finally
propose an improvement of this heuristics which reaches the optimal. We
also provide experimental evidences for the obtained performance.

The optimal window problem

We introduce the following quantity:

Definition 2 (Disconnection probability) Given some graph G, the
disconnection probability p is the probability that the graph becomes dis-
connected after a random edge swap.

Hypothesis 1 The disconnection probability p is constant during T
consecutive swaps

Hypothesis 2 The probability that a disconnected graph gets connected
with a random edge swap, called the reconnection probability, is equal to
zero.

These hypothesis are reasonable approximations in our context and will
actually be confirmed in the following. Thanks to them, we get the fol-
lowing expression for the success rate r(T), which is the probability that
the graph stays connected after T swaps:

r(T) = (1− p)T (4)

Definition 3 (Speed-up factor) The speed-up factor θ(T) = T ·r(T)
is the expectation of the number of swaps actually performed (not count-
ing cancelled swaps) between two connectivity tests.

The speed-up factor θ(T) represents the actual gain induced by the
speed-up for the total complexity of the connectivity tests Cconn.

Now, given a graph G with disconnection probability p, the best window
T is the window that maximizes the speed-up factor θ(T). We find an
optimal value T = −1/ ln(1 − p), which corresponds to a success rate
r(T) = 1/e. Finally, we obtain the following theorem:

Theorem 3 The speed-up factor θmax is reached if and only if one of
the equivalent conditions is satisfied:

(i) T = (− ln(1− p))−1 (ii) r(T) = e−1

The value of θmax depends only on p and is given by

θmax = (− ln(1− p) · e)−1 ∼p→0 (p · e)−1

Analysis of the heuristics

Knowing the optimality condition, we tried to estimate the performance
of the Gkantsidis et al. heuristics. Considering p as asymptotically small,
we obtained4 the following:

Theorem 4 The speed-up factor θGkan(p) obtained with the Gkantsidis
heuristics verifies:

∀ǫ > 0, θGkan = o
(

(θmax)1/2+ǫ
)

when p→ 0

More intuitively, this comes from the fact that the Gkantsidis et al.
heuristics is too pessimistic: when the graph gets disconnected, the de-
crease of T is too strong; conversely, when the graph stays connected, T
grows too slowly. By doing so, one obtains a very high success rate (very
close to 1), which is not the optimal (see Theorem 3).

An optimal dynamics

To improve the Gkantsidis et al. heuristics we propose the following one
(with two parameters q− and q+) :

Heuristics 2 IF the graph got disconnected after T swaps THEN T ←
T · (1− q−) ELSE T ← T · (1 + q+)

The main idea was to avoid the linear increase in T , which is too slow,
and to allow more flexibility between the two factors 1− q− and 1 + q+.
We proved4 the following:

Theorem 5 With this heuristics, a constant p, and for q+, q− close
enough to 0, the window T converges to the optimal value and stays
arbitrarily close to it with arbitrarily high probability if and only if

q+/q− = e− 1 (5)

Experimental evaluation of the new heuristics

To evaluate the relevance of these results, based on Hypothesis 1 and 2,
we will now compare empirically the speed-up factors θGkan, θnew and
θbest respectively obtained with the three following heuristics:

1. The Gkantsidis et al. heuristics (Heuristics 1)
2. Our new heuristics (Heuristics 2)
3. The optimal heuristics: at every step, we compute the window T

giving the maximal speed-up factor θbest.
5

We generated random graphs with various heavy tailed6 degree sequen-
ces, using a wide set of parameters, and all the results were consistent
with our analysis: θGkan behaved asymptotycally like

√
θbest, and our

average speed-up factor θnew always reached at least 90% of the optimal
θbest. Some typical results are shown below.

5 The heavy cost of this prohibits its use, as a heuristics. It only serves as a reference.
6 We used power-law like distributions: P (X = k) = (k + µ)−α, where α represents

the “heavy tail” behavior, while µ can be tuned to obtain the desired average z.

These experiments show that our new heuristics is very close to the
optimal. Thus, despite the fact that p actually varies during the shuffle,
our heuristics react fast enough (in regard to the variations of p) to get a
good, if not optimal, window T . We therefore obtain a success rate r(T)
in a close range around e−1.

These empirical evidences confirm the validity of our formal approach.
We obtained a total complexity Cnew = O(m + p ·m2), instead of the
already improved CGkan = O(m +

√
p · m2). Despite the fact that it

is asymptotically still outperformed by the complexity of the dynamic
connectivity algorithm Cdynamic (see Eq. 2), Cnew may be smaller in
practice if p is small enough. For many graph topologies corresponding
to real-world networks, especially the dense ones (like social relations,
word co-occurences, WWW), and therefore a low disconnection proba-
bility, our algorithm represents an alternative that may behave faster,
and which implementation is much easier.

4 A log-linear algorithm ?

We will now show that in the particular case of heavy-tailed degree dis-
tributions like the ones met in practice [5], one may reduce the discon-
nection probability p at logarithmic cost, thus reducing dramatically the
complexity of the connectivity tests.

Guiding principle

In a graph with a heavy-tailed degree distribution, most vertices have a
low degree. This means in particular that, by swapping random edges,
one may quite easily create very small isolated component. Conversely,
the non-negligible number of vertex of high degree form a robust core,
so that it is very unlikely that a random swap creates two large disjoint
components.

Definition 4 (Isolation test) An isolation test of width K on vertex
v tests wether this vertex belongs to a connected component of size lower
than or equal to K.

α = 2.5

z θGkan θnew θbest

2.1 0.79 0.88 0.90
3 3.00 5.00 5.19
6 20.9 112 117
12 341 35800 37000

α = 3

z θGkan θnew θbest

2.1 1.03 1.20 1.26
3 5.94 12.3 12.4
6 32.1 216 234
12 578 89800 91000

Table 1. Average speed-up factors for various values of the aver-
age degree z, and for graphs of size n = 104

To avoid the disconnection, we will now perform an isolation test after
every transition. If this isolation test returns true, we cancel the swap
rightaway. This way, we detect, at low cost O(K), a significant part of
the disconnections.
The disconnection probability p is now the probability that after T swaps
which passed the isolation test, the graph gets disconnected. It is straight-
forward to see that p is decreasing with K; more precisely, strong empir-
ical evidences and formal arguments4 led us to the following conjecture:

Conjecture 1 The disconnection probability p for random connected
graphs with heavy-tailed degree distributions decreases exponentially
with K: p(K) = O(e−λK) for some positive constant λ depending on the
distribution, and not on the size of the graph.

The final algorithm

Let us introduce the following quantity:

Definition 5 (Characteristic isolation width) The characteristic
isolation width KG of a graph G having m edges is the minimal isolation
test width K such that the disconnection probability p(K) verifies p(K) <
1/m.

K

0K
0T = m/10

graph G
Save the

>

<
?
<

connected ?
is G

edge swapsdo T

test width K
with isolation

Restore G to
its old state

NO

YES

C connCswaps

T

K

= 2

Fig. 2. Our final heuristics used to adjust K and T

Now, we can apply the shuffle process, as seen before, but with a window
T = Θ(m), and an isolation test width K equal to KG. From Conjec-
ture 1 and the definition of KG, we deduce that this process will perform
Ω(m) swaps in O(m log n) time. The difficulty might be to guess KG. We
showed4 that the heuristics shown in Figure 2 solves this: it aims at equi-
librating Cswaps and Cconn by dynamically adjusting K and T , looking
for a high success rate r(K, T) and keeping a large window T = Ω(m).
We compare in Table 2 typical running times with the naive algorithm,
the Gkantsidis et al. heuristics, our improved version of this heuristics,
and our final algorithm. Implementations are provided at [18].

http://www.liafa.jussieu.fr/~fabien/generation

m Naive Gkan. heur. Heuristics 2 Final algo.

103 0.51s 0.02s 0.02s 0.02s
104 26.9s 1.15s 0.47s 0.08s
105 3200s 142s 48s 1.1s
106 ≈ 4·105s ≈ 3·104s 10600s 25.9s
107 ≈ 4·107s ≈ 3·106s ≈ 106s 420s

Table 2. Average time for the generation of graphs of various sizes
with the same heavy-tailed degree distribution (α = 2.5,
z = 6.7) on a Centrino 1.5GHz with 512MB RAM.

Towards a O(m log log n) algorithm ?

The isolation tests are typically breadth- or depth-first searches that
stop when they have visited K + 1 vertices, or when then have explored
a component of size S lower than K. In the latter case, Conjecture 1
ensures4 that the expectation of S is < S >= O(1), so that the average
complexity of the isolation test was also O(1). Taking advantage of the
heavy-tailed degree distribution, we may be able to reduce as well the
complexity of the isolation tests that do not detect a disconnection.

The idea is simple: if the search meets a vertex of degree greater than K,
it can stop, because it means that the component’s size is also greater
than K. Several recent results indicate that searching a vertex of de-
gree at least K in an heavy-tailed network takes O(log K) steps in av-
erage [16,1], if the search is a depth-first search that always goes to the
unvisited neighbour of highest degree. Thus, running an isolation test
would be done in O(log K) average time instead of O(K). Finally, the
global complexity would become O(m log log n) time.

5 Conclusion

Focusing on the speed-up method introduced by Gkantsidis et al. for
the Markov chain Monte Carlo algorithm, we introduced a formal back-
ground allowing us to show that this heuristics is not optimal in its own
family. We improved it in order to reach the optimal, and empirically
confirmed the results.

Going further, we then took advantage of the characteristics of real-
world networks to introduce an original method allowing the generation
of random simple connected graphs with heavy-tailed degree distribu-
tions in O(m log n) time and O(m) space. It outperforms the previous
best known methods, and has the advantage of being extremly easy to
implement. We also have pointed directions for further enhancements to
reach a complexity of O(m log log n) time. The empirical measurement of
the performances of our methods show that it yields significant progress.
We provide an implementation of this last algorithm [18].

http://www.liafa.jussieu.fr/~fabien/generation

Notice however that the last results rely on a conjecture, for which we
have several arguments and strong empirical evidences, but were unable
to prove.

References

1. Adamic, Lukose, Puniyani, and Huberman. Search in power-law
networks. Phys. Rev. E, 64(046135), 2001.

2. Aiello, Chung, and Lu. A random graph model for massive graphs.
Proc. of the 32nd ACM STOC, pages 171–180, 2000.

3. C. Berge. Graphs and Hypergraphs. North-Holland, 1973.
4. Erdos and Gallai. Graphs with prescribed degree of vertices. Mat.

Lapok, 11:264–274, 1960.
5. Faloutsos, Faloutsos, and Faloutsos. On power-law relationships of

the internet topology. Proc. ACM SIGCOMM, 29:251–262, 1999.
6. Gkantsidis, Mihail, and Zegura. The markov chain simulation

method for generating connected power law random graphs. in proc.
ALENEX, 2003.

7. S. L. Hakimi. On the realizability of a set of integers as degrees of
the vertices of a linear graph. SIAM Journal, 10(3):496–506, 1962.

8. V. Havel. A remark on the existence of finite graphs. Caposis Pest.
Mat., 80:496–506, 1955.

9. Henzinger and King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. of ACM, 46(4), 1999.

10. Holm, de Lichtenberg, and Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. STOC’98, pages 79–89, 1998.

11. J. M. Roberts Jr. Simple methods for simulating sociomatrices with
given marginal totals. Social Networks, 22:273–283, 2000.

12. Milo, Kashtan, Itzkovitz, Newman, and Alon. Uniform generation of
random graphs with arbitrary degree seq. sub. Phys. Rev. E, 2001.

13. Molloy and Reed. A critical point for random graphs with a given
degree sequence. Random Struct. and Algo., pages 161–179, 1995.

14. Molloy and Reed. The size of the giant component of a random graph
with a given degree sequence. Comb., Prob. and Comp., 7:295, 1998.

15. R.Taylor. Constrained switchings in graphs. Comb. Mat. 8, 1980.
16. Sarshar, Boykin, and Roychowdhury. Scalable percolation search in

power law networks. P2P’04, pages 2–9.
17. M. Thorup. Near-optimal fully-dynamic graph connectivity. Proc.

of the 32nd ACM STOC, pages 343–350, 2000.
18. www.liafa.jussieu.fr/∼fabien/generation.

http://www.liafa.jussieu.fr/~fabien/generation

