Fast generation of random connected graphs with prescribed degrees

Fabien Viger^{*,†}, Matthieu Latapy[†]

* LIP6, CNRS and University Pierre and Marie Curie, Paris, France † LIAFA, CNRS and University Denis Diderot, Paris, France

August 17th, 2005

Rigorous randomness and linear complexity. . .

Rigorous randomness and linear complexity. . .

...But the graph isn't always simple and/or connected

State of the art

Description Towards optimal heuristics

Prevent the disconnection

Part I

State of the art

Generation of random simple connected graphs with prescribed degrees

◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)

- ◇ Realize the degree sequence : linear (Havel-Hakimi 1955)
- ♦ Connection : linear number of edge swaps

- ◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)
- ◇ Connection : linear number of edge swaps
 ▷ At this point, the graph is highly biased

- ◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)
- ◇ Connection : linear number of edge swaps
- Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

- ◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)
- ♦ Connection : linear number of edge swaps
- Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

- ◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)
- ♦ Connection : linear number of edge swaps
- Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

- ◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)
- ♦ Connection : linear number of edge swaps
- Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

- ◇ **Realize** the degree sequence : **linear** (Havel-Hakimi 1955)
- ◇ Connection : linear number of edge swaps
- Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

- ♦ State space : all simple connected graphs with the right degrees
- ◇ Initial state : graph obtained after the first two steps
- ♦ Transitions : valid edges swaps

- ▷ **Theorem** (Taylor 1982) :
 - This Markov chain is ergodic and symmetric. It converges towards the **uniform** distribution over all states

▷ Empirical result (Milo 2001, Gkantsidis 2003) :

After O(|G|) transitions, no difference can be made between the graphs obtained at this point and the graphs obtained with further iterations.

 \triangleright But each transition takes O(|G|) time (connectivity test)

▷ **Quadratic** complexity

Generation of simple connected graphs

Generation of simple connected graphs

Generation of simple connected graphs

Generation of simple connected graphs

Speed-up (Gkantsidis et al. 2003) Generation of simple connected graphs

▷ Naive : One connectivity test for each transition

▷ Naive : One connectivity test for each transition

▷ Naive : One connectivity test for each transition

▷ Naive : One connectivity test for each transition

▷ Naive : One connectivity test for each transition

▷ Naive : One connectivity test for each transition

▷ Naive : One connectivity test for each transition

Choice of the speed-up window T : heuristics Speed-up the shuffle process

▷ Gkantsidis et al. (2003) : auto-adjust

▷ Efficiency ?

Benchmark Speed-up the shuffle process

Size	Naive	Gkan.
1000	2.9 s	7.2
10^4	6 min	13.3
10^5	pprox10 hours	5
10^{6}	pprox40 days	2.6

Part II

Towards optimal heuristics

Formal analysis Proposal of new heuristics

Formal analysis : Definitions

Towards optimal heuristics

\triangleright Disconnection probability p

10/24

Formal analysis Towards optimal heuristics

\triangleright Disconnection probability p

 $\triangleright \text{ Speed-up factor } \theta = r \cdot T = T \cdot (1-p)^T$

Optimality condition Formal analysis

 \triangleright Speed-up factor $\theta = T \cdot (1-p)^T$

 θ is maximal when T = 1/p i.e. r = 1/e and $\theta_{max} = \frac{1}{p \cdot e}$

11/24

 \triangleright Auto-stabilisation of the window T towards a steady state

$$r \cdot (T+1) + (1-r) \cdot \frac{T}{2} = T$$

 \triangleright The steady-state success rate is very close to 1

 \triangleright Speed-up ratio obtained : $\theta \sim \sqrt{\theta_{max}}$

Success \Rightarrow $T = T * (1 + q^+)$ instead of T = T + 1

Failure \Rightarrow $T = T * (1 - q^{-})$ instead of T = T/2

 \triangleright Steady-state window only depends on the ratio q^+/q^-

 \triangleright Optimality condition $T_{steady} = \frac{1}{p}$ is satisfied $\iff \frac{q^+}{q^-} = e - 1$

▷ Speed-up factor close to θ_{max}

Benchmark The new heuristics

▷ Definition of the optimal heuristics

▷ Comparison of the speed-up factors

n	z	θ_{Gk}	heta	$ heta_{opt}$
10^{4}	2.1	0.79	0.88	0.90
10^{4}	3	3.00	5.00	5.19
10^{4}	6	20.9	112	117
10^{4}	20	341	35800	37000

 \triangleright 90% close to the optimal

Size	Naive	Gkan.	Opt. Heur.
1000	2.9 s	7.2	11.4
10^4	6 min	13.3	50
10^{5}	pprox10 hours	5	11.8
10^{6}	pprox40 days	2.6	5

Part III

Prevent the disconnection

Decrease the disconnection probability p

⊳ Idea

decrease p to raise the speed-up factor $\boldsymbol{\theta}$

 \triangleright How ?

⊳ Idea

decrease p to raise the speed-up factor $\boldsymbol{\theta}$

 \triangleright How ?

⊳ Idea

decrease p to raise the speed-up factor $\boldsymbol{\theta}$

 \triangleright How ?

⊳ Idea

decrease p to raise the speed-up factor $\boldsymbol{\theta}$

 \triangleright How ?

Prevent the disconnection

⊳ Idea

decrease p to raise the speed-up factor $\boldsymbol{\theta}$

 \triangleright How?

Avoid the formation of *isolated pairs*

In practice, reduction factor from 1/2 to 1/20

Going further : *K***-isolation tests**

Prevent the disconnection

▷ Detect and avoid the formation of *small* isolated components

▷ Detect and avoid the formation of *small* isolated components

 \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected ▷ Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
- ◊ If a small component is detected, cancel the swap rightaway

Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
- \diamond If a small component is detected, cancel the swap rightaway
- $\diamond\,$ If not, validate the swap

Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two *K*-limited breadth- or depth-first search from the vertices that might have been disconnected
- ◊ If a small component is detected, cancel the swap rightaway
- ◊ If not, validate the swap
- \triangleright Time complexity O(K) per edge swap, instead of O(1)

▷ Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
- ◊ If a small component is detected, cancel the swap rightaway
- ◊ If not, validate the swap
- \triangleright Time complexity O(K) per edge swap, instead of O(1)
- \rhd But the lower probability p causes a raise of the speed-up factor θ

Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
- ◊ If a small component is detected, cancel the swap rightaway
- \diamond If not, validate the swap
- \triangleright Time complexity O(K) per edge swap, instead of O(1)

▷ Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
- \diamond If a small component is detected, cancel the swap rightaway
- \diamond If not, validate the swap
- \triangleright Time complexity O(K) per edge swap, instead of O(1)
- - \diamond Intuition : K vertices are K-exponentially unlikely to be isolated

▷ Detect and avoid the formation of *small* isolated components

- \diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
- \diamond If a small component is detected, cancel the swap rightaway
- \diamond If not, validate the swap
- \triangleright Time complexity O(K) per edge swap, instead of O(1)
- - \diamond Intuition : K vertices are K-exponentially unlikely to be isolated
 - \diamond Consequence : p would decrease exponentially with K ?

Effect on the disconnection probability *K*-lsolation tests

18/24

Adjusting the isolation test width K*K*-lsolation tests

Empirically : $p \sim e^{-\lambda K}$

$$\theta_{max} = \frac{1}{p \cdot e} \; \Rightarrow \; \theta_{max} \sim e^{\lambda K}$$

 \triangleright Exponential decrease of C_{tests} (connectivity tests complexity)

 \triangleright Linear increase of C_{swaps} (complexity of edge swaps)

Adjusting the isolation test width K*K*-lsolation tests

Empirically : $p \sim e^{-\lambda K}$

$$\theta_{max} = \frac{1}{p \cdot e} \; \Rightarrow \; \theta_{max} \sim e^{\lambda K}$$

 \triangleright Exponential decrease of C_{tests} (connectivity tests complexity)

 \triangleright Linear increase of C_{swaps} (complexity of edge swaps)

 \triangleright The tradeoff consists in balancing both C_{swaps} and C_{tests}

$$C_{swaps} = O(K \cdot |G|)$$

$$C_{tests} = O\left(\frac{|G|^2}{e^{\lambda K}}\right)$$

$$\Rightarrow K = O(\log |G|)$$

Adjusting the isolation test width K*K*-lsolation tests

Empirically : $p \sim e^{-\lambda K}$

$$\theta_{max} = \frac{1}{p \cdot e} \; \Rightarrow \; \theta_{max} \sim e^{\lambda K}$$

 \triangleright Exponential decrease of C_{tests} (connectivity tests complexity)

 \triangleright Linear increase of C_{swaps} (complexity of edge swaps)

 \triangleright The tradeoff consists in balancing both C_{swaps} and C_{tests}

$$C_{swaps} = O(K \cdot |G|)$$

$$C_{tests} = O\left(\frac{|G|^2}{e^{\lambda K}}\right)$$

$$\Rightarrow K = O(\log |G|)$$

 \triangleright Final complexity is $O(|G| \log |G|)$ instead of $O(|G|^2)$
Adjusting the isolation test width *K*

Maybe not optimal, but works fine

20/24

Benchmark

Size	Naive	Gkan.	Opt. Heur.	Final
1000	2.9 s	7.2	11.4	22.3
10^{4}	6 min	13.3	50	510
10^{5}	pprox10 hours	5	11.8	2180
10^{6}	pprox40 days	2.6	5	7780

Part IV

Conclusion

▷ Analysis of Gkantsidis et al. heuristics

▷ New heuristics, designed to reach the optimal

▷ Validation, benchmarks

▷ New idea to prevent the disconnection during the shuffle

▷ Log-linear algorithm. Implementation, benchmarks

▷ More formal proofs

▷ Extension to directed graphs

> Application to some dynamic connectivity algorithms

Thank you

