Fast generation of random connected graphs with prescribed degrees

Fabien Viger* ${ }^{*} \dagger$, Matthieu Latapy ${ }^{\dagger}$

* LIP6, CNRS and University Pierre and Marie Curie, Paris, France \dagger LIAFA, CNRS and University Denis Diderot, Paris, France

August 17th, 2005

The Molloy and Reed model

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

1
2
3
4
5
7
9

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

Rigorous randomness and linear complexity. . .

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

Rigorous randomness and linear complexity. . .
. . But the graph isn't always simple and/or connected
\triangleright State of the art
\triangleright Towards optimal heuristics
\triangleright Prevent the disconnection

Part I

State of the art

Generation of random simple connected graphs with prescribed degrees

Generation of simple connected graphs

The global algorithm

Generation of simple connected graphs

Simple

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)

The global algorithm

Simple

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps

The global algorithm

Generation of simple connected graphs

Simple
Connected

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps
\triangleright At this point, the graph is highly biased

The global algorithm

Simple
Connected

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps
\diamond Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

The global algorithm

Simple
Connected

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps
\diamond Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

The global algorithm

Simple

Connected

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps
\diamond Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

The global algorithm

Generation of simple connected graphs

Simple

Connected

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps
\diamond Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

The global algorithm

Simple

Connected Random

\diamond Realize the degree sequence : linear (Havel-Hakimi 1955)
\diamond Connection : linear number of edge swaps
\diamond Shuffle : perform a certain number of random edge swaps that keep the graph simple and connected

The Shuffle

Generation of simple connected graphs

The Shuffle

Generation of simple connected graphs

The Shuffle

Generation of simple connected graphs

The Shuffle

Generation of simple connected graphs

The Shuffle

Generation of simple connected graphs

The Shuffle

Generation of simple connected graphs

$m_{\mathrm{G}}^{\mathrm{ok}} \cdot \mathrm{G}_{\mathrm{G}}^{\mathrm{ok}} \cdot \mathrm{G}$

The Shuffle

Generation of simple connected graphs

The Shuffle

Generation of simple connected graphs

Generation of simple connected graphs

$\sim_{\mathrm{G}}^{\mathrm{ok}} \cdot \mathrm{G} \longrightarrow \mathrm{G} \longrightarrow \mathrm{G}$

The Shuffle

Generation of simple connected graphs

The shuffle seen as a Markov chain

\diamond State space : all simple connected graphs with the right degrees
\diamond Initial state : graph obtained after the first two steps
\diamond Transitions : valid edges swaps

\triangleright Theorem (Taylor 1982) :
This Markov chain is ergodic and symmetric. It converges towards the uniform distribution over all states

Convergence speed

- Empirical result (Milo 2001, Gkantsidis 2003) :

After $O(|G|)$ transitions, no difference can be made between the graphs obtained at this point and the graphs obtained with further iterations.
\triangleright But each transition takes $O(|G|)$ time (connectivity test)
\triangleright Quadratic complexity

Speed-up (Gkantsidis et al. 2003)

\triangleright Naive : One connectivity test for each transition

Speed-up (Gkantsidis et al. 2003)

\triangleright Naive : One connectivity test for each transition

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

\triangleright Speed-up : One connectivity test every T edge swaps

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

\triangleright Speed-up : One connectivity test every T edge swaps

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

\triangleright Speed-up : One connectivity test every T edge swaps

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

\triangleright Speed-up : One connectivity test every T edge swaps

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

\triangleright Speed-up : One connectivity test every T edge swaps

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

\triangleright Naive : One connectivity test for each transition

\triangleright Speed-up : One connectivity test every T edge swaps

Choice of the speed-up window T : heuristics

\triangleright Gkantsidis et al. (2003) : auto-adjust

\triangleright Efficiency?

Benchmark

Speed-up the shuffle process

Size	Naive	Gkan.
1000	2.9 s	7.2
10^{4}	6 min	13.3
10^{5}	≈ 10 hours	5
10^{6}	≈ 40 days	2.6

Part II

Towards optimal heuristics

Formal analysis
Proposal of new heuristics

Formal analysis : Definitions

Towards optimal heuristics
\triangleright Disconnection probability p

\triangleright Disconnection probability p

\triangleright Success ratio $r=(1-p)^{T}$

\triangleright Speed-up factor $\theta=r \cdot T=T \cdot(1-p)^{T}$

Optimality condition

Formal analysis

\triangleright Speed-up factor $\theta=T \cdot(1-p)^{T}$

θ is maximal when $T=1 / p$ i.e. $r=1 / e$ and $\theta_{\max }=\frac{1}{p \cdot e}$

Analysis of the Gkantsidis heuristics

\triangleright Auto-stabilisation of the window T towards a steady state

$$
r \cdot(T+1)+(1-r) \cdot \frac{T}{2}=T
$$

\triangleright The steady-state success rate is very close to 1
\triangleright Speed-up ratio obtained : $\theta \sim \sqrt{\theta_{\max }}$

The new heuristics

Success $\Rightarrow T=T *\left(1+q^{+}\right) \quad$ instead of $\quad T=T+1$

Failure $\quad \Rightarrow \quad T=T *\left(1-q^{-}\right) \quad$ instead of $\quad T=T / 2$
\triangleright Steady-state window only depends on the ratio q^{+} / q^{-}
\triangleright Optimality condition $T_{\text {steady }}=\frac{1}{p}$ is satisfied $\Longleftrightarrow \frac{q^{+}}{q^{-}}=e-1$
\triangleright Speed-up factor close to $\theta_{\max }$

Benchmark

\triangleright Definition of the optimal heuristics
\triangleright Comparison of the speed-up factors

n	z	$\theta_{G k}$	θ	$\theta_{\text {opt }}$
10^{4}	2.1	0.79	0.88	0.90
10^{4}	3	3.00	5.00	5.19
10^{4}	6	20.9	112	117
10^{4}	20	341	35800	37000

$\triangleright 90 \%$ close to the optimal

Benchmark II

The new heuristics

Size	Naive	Gkan.	Opt. Heur.
1000	2.9 s	7.2	11.4
10^{4}	6 min	13.3	50
10^{5}	≈ 10 hours	5	11.8
10^{6}	≈ 40 days	2.6	5

Part III

Prevent the disconnection

Decrease the disconnection probability p

Prevent the disconnection

\triangleright Idea
decrease p to raise the speed-up factor θ
\triangleright How?
Avoid the formation of isolated pairs

Prevent the disconnection

\triangleright Idea
decrease p to raise the speed-up factor θ
\triangleright How?
Avoid the formation of isolated pairs

Prevent the disconnection

\triangleright Idea
decrease p to raise the speed-up factor θ
\triangleright How?
Avoid the formation of isolated pairs

Prevent the disconnection

\triangle Idea
decrease p to raise the speed-up factor θ
\triangleright How?
Avoid the formation of isolated pairs

Prevent the disconnection

- Idea
decrease p to raise the speed-up factor θ
\triangleright How?
Avoid the formation of isolated pairs

In practice, reduction factor from $1 / 2$ to $1 / 20$

Going further : K-isolation tests

\triangleright Detect and avoid the formation of small isolated components

Going further : K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected

Going further : K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway

Going further : K-isolation tests

Δ Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway
\diamond If not, validate the swap

Going further : K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway
\diamond If not, validate the swap
\triangleright Time complexity $O(K)$ per edge swap, instead of $O(1)$

Going further : K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway
\diamond If not, validate the swap
\triangleright Time complexity $O(K)$ per edge swap, instead of $O(1)$
\triangleright But the lower probability p causes a raise of the speed-up factor θ

Going further : K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway
\diamond If not, validate the swap
\triangleright Time complexity $O(K)$ per edge swap, instead of $O(1)$
\triangleright But the lower probability p causes a raise of the speed-up factor θ \diamond How much will p decrease?

Going further: K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway
\diamond If not, validate the swap
\triangleright Time complexity $O(K)$ per edge swap, instead of $O(1)$
\triangleright But the lower probability p causes a raise of the speed-up factor θ
\diamond How much will p decrease?
\diamond Intuition : K vertices are K-exponentially unlikely to be isolated

Going further: K-isolation tests

\triangleright Detect and avoid the formation of small isolated components
\diamond For every edge swap, perform two K-limited breadth- or depthfirst search from the vertices that might have been disconnected
\diamond If a small component is detected, cancel the swap rightaway
\diamond If not, validate the swap
\triangleright Time complexity $O(K)$ per edge swap, instead of $O(1)$
\triangleright But the lower probability p causes a raise of the speed-up factor θ
\diamond How much will p decrease?
\diamond Intuition : K vertices are K-exponentially unlikely to be isolated
\diamond Consequence : p would decrease exponentially with K ?

Effect on the disconnection probability

Adjusting the isolation test width K

Empirically : $p \sim e^{-\lambda K}$

$$
\theta_{\max }=\frac{1}{p \cdot e} \Rightarrow \theta_{\max } \sim e^{\lambda K}
$$

\triangleright Exponential decrease of $C_{t e s t s}$ (connectivity tests complexity)
\triangleright Linear increase of $C_{\text {swaps }}$ (complexity of edge swaps)

Adjusting the isolation test width K

Empirically : $p \sim e^{-\lambda K}$

$$
\theta_{\max }=\frac{1}{p \cdot e} \Rightarrow \theta_{\max } \sim e^{\lambda K}
$$

\triangleright Exponential decrease of $C_{\text {tests }}$ (connectivity tests complexity)
\triangleright Linear increase of $C_{\text {swaps }}$ (complexity of edge swaps)
\triangleright The tradeoff consists in balancing both $C_{\text {swaps }}$ and $C_{\text {tests }}$

$$
\left.\begin{array}{c}
C_{\text {swaps }}=O(K \cdot|G|) \\
\quad C_{\text {tests }}=O\left(\frac{|G|^{2}}{e^{\lambda K}}\right)
\end{array}\right\} \Rightarrow K=O(\log |G|)
$$

Adjusting the isolation test width K

Empirically: $p \sim e^{-\lambda K}$

$$
\theta_{\max }=\frac{1}{p \cdot e} \Rightarrow \theta_{\max } \sim e^{\lambda K}
$$

\triangleright Exponential decrease of $C_{\text {tests }}$ (connectivity tests complexity)
\triangleright Linear increase of $C_{\text {swaps }}$ (complexity of edge swaps)
\triangleright The tradeoff consists in balancing both $C_{\text {swaps }}$ and $C_{\text {tests }}$

$$
\left.\begin{array}{c}
C_{\text {swaps }}=O(K \cdot|G|) \\
\quad C_{\text {tests }}=O\left(\frac{|G|^{2}}{e^{\lambda K}}\right)
\end{array}\right\} \Rightarrow K=O(\log |G|)
$$

\triangleright Final complexity is $O(|G| \log |G|)$ instead of $O\left(|G|^{2}\right)$

Adjusting the isolation test width K

Maybe not optimal, but works fine

Benchmark

Size	Naive	Gkan.	Opt. Heur.	Final
1000	2.9 s	7.2	11.4	22.3
10^{4}	6 min	13.3	50	510
10^{5}	≈ 10 hours	5	11.8	2180
10^{6}	≈ 40 days	2.6	5	7780

Part IV

Conclusion

Contributions

\triangleright Analysis of Gkantsidis et al. heuristics
\triangleright New heuristics, designed to reach the optimal
\triangleright Validation, benchmarks
\triangleright New idea to prevent the disconnection during the shuffle
\triangleright Log-linear algorithm. Implementation, benchmarks

Future work

\triangleright More formal proofs
\triangleright Extension to directed graphs
\triangleright Application to some dynamic connectivity algorithms

The End

Thank you

