Fast generation of random connected
graphs with prescribed degrees

*,1 f

* LIP6, CNRS and University Pierre and Marie Curie, Paris, France
T LIAFA, CNRS and University Denis Diderot, Paris, France

August 17th, 2005

The Molloy and Reed model

1/24

\ The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

1/24

\ The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

NP
) &
R

1/24

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

1-— 6
6 11/;> 2 — 15
1 7
5 ;D< " 3- - 16
4 — 10
9
é\z 8 14 13 5 -— 8
5 7 — 11
() —=« 9 -+ 12
o—@

16 13 — 14

3

1/24

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

1— 6
2 =15

11%)
l 5 ;D<7 1 3 - 16
o Mo
3 Q\ 1535 7 11
4 .
/Q 9 12

13— 14

1/24

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

1-— 6

6 11/}> 2 — 15
1 7

5 1 3-—~ 16

o - 4 — 10

2 8 14 5-— §

5 7 — 11

() —=« 9 -+ 12
o—@

16 13 -~ 14

3

Rigorous randomness and linear complexity. . .

1/24

The Molloy and Reed model

Random element in the set of all multigraphs with these degrees

1-— 6
6 11/}> 2 — 15
1 7
5 1 3-—~ 16
o - 4 — 10
2 8 14 5-—- §
Q\ 5 7 — 11
4 9 — 12
o—@

16 13 = 14

3

Rigorous randomness and linear complexity. . .

.. .But the graph isn't always simple and/or connected

1/24

—

\ Plan

> State of the art
> Towards optimal heuristics

> Prevent the disconnection

2/24

Part |

State of the art

Generation of random simple connected graphs
with prescribed degrees

‘ The global algorithm
Generation of simple connected graphs
“a
¢ o«

— 3/24

\ The global algorithm

Simple

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)

3/24

The global algorithm

Simple

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)

¢ Connection : linear number of edge swaps

3/24

The global algorithm

Simple
Connected

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)

¢ Connection : linear number of edge swaps
> At this point, the graph is highly biased

3/24

—

The global algorithm

Simple
Connected

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)
¢ Connection : linear number of edge swaps

¢ Shuffle : perform a certain number of random edge swaps that
keep the graph simple and connected

3/24

—

The global algorithm

Simple
Connected

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)
¢ Connection : linear number of edge swaps

¢ Shuffle : perform a certain number of random edge swaps that
keep the graph simple and connected

3/24

—

The global algorithm

Simple
Connected

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)
¢ Connection : linear number of edge swaps

¢ Shuffle : perform a certain number of random edge swaps that
keep the graph simple and connected

3/24

—

The global algorithm

Simple
Connected

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)
¢ Connection : linear number of edge swaps

¢ Shuffle : perform a certain number of random edge swaps that
keep the graph simple and connected

3/24

—

The global algorithm

Simple
Connected
Random

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)
¢ Connection : linear number of edge swaps

¢ Shuffle : perform a certain number of random edge swaps that
keep the graph simple and connected

3/24

—

The Shuffle

Generation of simple connected graphs

4/24

The Shuffle

Generation of simple connected graphs

4/24

The Shuffle

Generation of simple connected graphs

4/24

The Shuffle

Generation of simple connected graphs

4/24

The Shuffle
Generation of simple connected graphs

ok ok
-® ® -

4/24

The Shuffle
Generation of simple connected graphs

ok ok NO
@ ©® @

4/24

The Shuffle

Generation of simple connected graphs

4/24

The Shuffle
Generation of simple connected graphs

ok ok
-® ® -

4/24

The Shuffle
Generation of simple connected graphs

ok ok ok
-® ® ©® -c

4/24

The Shuffle
Generation of simple connected graphs

ok ok ok ok
® ©® ® © -

4/24

The shuffle seen as a Markov chain

¢ State space : all simple connected graphs with the right degrees
¢ Initial state : graph obtained after the first two steps

¢ Transitions : valid edges swaps

O, ©
—
®)
(Taylor 1982) :

This Markov chain is ergodic and symmetric. It
converges towards the uniform distribution over all
states

5/24

—

Convergence speed

> Empirical result (Milo 2001, Gkantsidis 2003) :

After O(|G|) transitions, no difference can be made
between the graphs obtained at this point and the
graphs obtained with further iterations.

> But each transition takes O(|G|) time (connectivity test)

> Quadratic complexity

6/24

—

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok
@

7/24

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok
@ e

7/24

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok ok
@ @

7/24

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok ok
-® ® -

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

> Naive : One connectivity test for each transition

ok ok ok
-® ® ©® -¢

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

> Naive : One connectivity test for each transition

ok ok ok ok
® ® e o -

7/24

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

> Naive : One connectivity test for each transition

ok ok ok ok
® ©® ® 6 -

> Speed-up : One connectivity test every 1" edge swaps
ok
e

7/24

—

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok ok ok ok
® ® & © -

> Speed-up : One connectivity test every 1" edge swaps

S

7/24

—

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok ok ok ok
® ® & © -

> Speed-up : One connectivity test every 1" edge swaps

ok ? ? NO
-@® - o @

7/24

—

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

> Naive : One connectivity test for each transition

ok ok ok ok
® ©® ® 6 -

> Speed-up : One connectivity test every 1" edge swaps
ok
e

7/24

—

\ Speed-up (Gkantsidis et al. 2003)

> Naive : One connectivity test for each transition

ok ok ok ok
® ® & © -

> Speed-up : One connectivity test every 1" edge swaps

S

7/24

—

Speed-up (Gkantsidis et al. 2003)

Generation of simple connected graphs

> Naive : One connectivity test for each transition

ok ok ok ok
® ©® ® 6 -

> Speed-up : One connectivity test every 1" edge swaps
ok ? ? oK
@ o o @

7/24

—

Wthe speed-up window T : heuristics

> Gkantsidis et al. (2003) : auto-adjust

Cancel the
last swaps

Peform T swaps connected ?
T=T/2

T T:T+1}

_ v

> Efficiency ?

8 /24

—

\ Benchmark

Size Naive | Gkan.
1000 2.9 s 7.2
104 6 min 13.3
10° | ~10 hours 5
106 | ~40 days 2.6

0/24

Part ||

Towards optimal heuristics

Formal analysis
Proposal of new heuristics

Formal analysis : Definitions
Towards optimal heuristics

> Disconnection probability p

o/‘ o/‘

10/24

Formal analysis
Towards optimal heuristics

> Disconnection probability P

\.

> Success ratio r = (1 —p)?

> Speed-up factor § =r-T =T (1 —p)!

10/24

—

Optimality condition

> Speed-up factor 0 =T - (1 —p)?

40 | | | 40
35/] 35
@ 30 300
o ke
+— | 257
% 25 E
2 20 I% 20r
|
S 15 @ 15/
@ é O :
o : o :
n 10f T=1/p 1 n 10} ; r=1/e
0 i ‘ ‘ 0 ‘ — ‘ ‘
0 100 200 300 400 0 0.2 0.4 0.6 0.8 1
Window T Success ratio r

6 is maximal when T'=1/p i.e. r=1/e and 0,4, =]ﬁ

11/24

—

Analysis of the Gkantsidis heuristics

> Auto-stabilisation of the window I’ towards a steady state

T
— =T
2

r-(T+1)4+(1—r)-

> The steady-state success rate is very close to 1

> Speed-up ratio obtained : 6 ~ /0,4

12/24

The new heuristics

Success = T =T=x*(1+¢q") insteadof T=T+1

Failure = T=T=x(1—-q7) instead of T =1T/2

> Steady-state window only depends on the ratio ¢* /¢~

> Optimality condition Tsteqd, = % Is satisfied <—— g— —e—1

> Speed-up factor close to 0,4,

13/24

—

\\\\\\\\\\\\\\\-_

> Definition of the optimal heuristics

> Comparison of the speed-up factors

n z | Ok 0 Oopt
104 12.110.79 | 0.88 | 0.90
10| 3 [3.00| 5.00 | 5.19
104 6 | 209 | 112 117
10% | 20 | 341 | 35800 | 37000

> 90% close to the optimal

—

Benchmark

14/24

Benchmark |l

Size Naive | Gkan. | Opt. Heur.
1000 2.9 s 7.2 11.4
10 6 min | 13.3 50
10° | ~10 hours 5 11.8
106 | ~40 days 2.6 5

15/24

Part Ili

Prevent the disconnection

Decrease the disconnection probability p

Isolated pairs
Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How 7

Avoid the formation of isolated pairs

16,/24

Isolated pairs
Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How 7

Avoid the formation of isolated pairs

16,/24

Isolated pairs
Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How 7

Avoid the formation of isolated pairs

° e

16,/24

Isolated pairs
Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How 7

Avoid the formation of isolated pairs

16,/24

Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How ?

Avoid the formation of isolated pairs

In practice, reduction factor from 1/2 to 1/20

16,/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

> Time complexity O(K) per edge swap, instead of O(1)

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

> Time complexity O(K) per edge swap, instead of O(1)

> But the lower probability p causes a raise of the speed-up factor 6

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

> Time complexity O(K) per edge swap, instead of O(1)

> But the lower probability p causes a raise of the speed-up factor 6

¢ How much will p decrease ?

17/24

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

> Time complexity O(K) per edge swap, instead of O(1)

> But the lower probability p causes a raise of the speed-up factor 6

¢ How much will p decrease ?
¢ Intuition : K vertices are K-exponentially unlikely to be isolated

17/24

—

Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

> Time complexity O(K) per edge swap, instead of O(1)

> But the lower probability p causes a raise of the speed-up factor 6

¢ How much will p decrease ?
¢ Intuition : K vertices are K-exponentially unlikely to be isolated

¢ Consequence : p would decrease exponentially with K7

17/24

—

Disconnection probability p

=
o

Effect on the disconnection probability

o

|
N

K.,
%o
*
S
*
*
*
*
xK
*
*
*
*
*
*
>§<|

0 20

40 60
Isolation test width K

80

100

18/24

Adjusting the isolation test width K

Empirically : p ~ e M

1
AK
Hmaa: = — = Hma:c ~ €

p-e€
> Exponential decrease of Ci.s:s (connectivity tests complexity)

> Linear increase of Cyyaps (complexity of edge swaps)

19/24

Adjusting the isolation test width K

Empirically : p ~ e M

1
AK
Hmaa: = — = Hma:c ~ €

p-e€
> Exponential decrease of Ci.s:s (connectivity tests complexity)

> Linear increase of Cyyaps (complexity of edge swaps)

> The tradeoff consists in balancing both Cy4ps and Ciests
Cswaps — O(K' |G|)

2 = K =O0O(log |G
CtestsO(g_K)} (g’ |)

19/24

—

\Adjusting the isolation test width K

AK

Empirically : p~e™

1
AK
Hmaa: = — = Hma:c ~ €

p-e€
> Exponential decrease of Ci.s:s (connectivity tests complexity)

> Linear increase of Cyyaps (complexity of edge swaps)

> The tradeoff consists in balancing both Cy4ps and Chests
Cswaps — O(K' |G|)

2 = K =O0O(log |G
CtestsO(g_K)} (g’ |)

> Final complexity is (|| log |G instead of O(|GI?)

19/24

—

\Adjusting the isolation test width K

- T=Tx*2 <

T
o) TR
YES

Y Perform T swaps -
SAVE J—> validated by con%[éll:ted :

the graph - K-isolation test,
NO

' Restore the
- @‘ { saved graph

Maybe not optimal, but works fine

20/24

—

\ Benchmark

Size Naive | Gkan. | Opt. Heur. | Final
1000 2.9 s 7.2 11.4 | 22.3
10* 6 min | 13.3 50 | 510
10° | ~10 hours 5 11.8 | 2180
106 | ~40 days 2.6 5| 7780

21/24

Conclusion

Contributions

> Analysis of Gkantsidis et al. heuristics

> New heuristics, designed to reach the optimal

> Validation, benchmarks

> New idea to prevent the disconnection during the shuffle

> Log-linear algorithm. Implementation, benchmarks

22 /24

—

Future work

> More formal proofs

> Extension to directed graphs

> Application to some dynamic connectivity algorithms

23 /24

‘ The End

Thank you

2424

