
Fast generation of random connected
graphs with prescribed degrees

Fabien Viger∗,†, Matthieu Latapy†
∗ LIP6, CNRS and University Pierre and Marie Curie, Paris, France

† LIAFA, CNRS and University Denis Diderot, Paris, France

August 17th, 2005

The Molloy and Reed model
Introduction

1/24

The Molloy and Reed model
Introduction

Random element in the set of all multigraphs with these degrees

1/24

The Molloy and Reed model
Introduction

Random element in the set of all multigraphs with these degrees

1/24

The Molloy and Reed model
Introduction

Random element in the set of all multigraphs with these degrees

10

4

10

3

2

15

16

9
8

7

12

11

13

16

15

1 6

3

4

5

7

9

13

11

12

14

8

1
2

14

6

5

1/24

The Molloy and Reed model
Introduction

Random element in the set of all multigraphs with these degrees

10

4

10

3

2

15

16

9
8

7

12

11

13

16

15

1 6

3

4

5

7

9

13

11

12

14

8

1
2

14

6

5

1/24

The Molloy and Reed model
Introduction

Random element in the set of all multigraphs with these degrees

10

4

10

3

2

15

16

9
8

7

12

11

13

16

15

1 6

3

4

5

7

9

13

11

12

14

8

1
2

14

6

5

Rigorous randomness and linear complexity. . .

1/24

The Molloy and Reed model
Introduction

Random element in the set of all multigraphs with these degrees

10

4

10

3

2

15

16

9
8

7

12

11

13

16

15

1 6

3

4

5

7

9

13

11

12

14

8

1
2

14

6

5

Rigorous randomness and linear complexity. . .

. . .But the graph isn’t always simple and/or connected

1/24

Plan

. State of the art

. Towards optimal heuristics

. Prevent the disconnection

2/24

Part I

State of the art

Generation of random simple connected graphs
with prescribed degrees

The global algorithm
Generation of simple connected graphs

3/24

The global algorithm
Generation of simple connected graphs

Simple

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

3/24

The global algorithm
Generation of simple connected graphs

Simple

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

3/24

The global algorithm
Generation of simple connected graphs

Simple

Connected

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

. At this point, the graph is highly biased

3/24

The global algorithm
Generation of simple connected graphs

Simple

Connected

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

¦ Shuffle : perform a certain number of random edge swaps that

keep the graph simple and connected

3/24

The global algorithm
Generation of simple connected graphs

Simple

Connected

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

¦ Shuffle : perform a certain number of random edge swaps that

keep the graph simple and connected

3/24

The global algorithm
Generation of simple connected graphs

Simple

Connected

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

¦ Shuffle : perform a certain number of random edge swaps that

keep the graph simple and connected

3/24

The global algorithm
Generation of simple connected graphs

Simple

Connected

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

¦ Shuffle : perform a certain number of random edge swaps that

keep the graph simple and connected

3/24

The global algorithm
Generation of simple connected graphs

Simple

Connected

Random

¦ Realize the degree sequence : linear (Havel-Hakimi 1955)

¦ Connection : linear number of edge swaps

¦ Shuffle : perform a certain number of random edge swaps that

keep the graph simple and connected

3/24

The Shuffle
Generation of simple connected graphs

G

4/24

The Shuffle
Generation of simple connected graphs

ok

G

4/24

The Shuffle
Generation of simple connected graphs

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

ok

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

G

ok

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

NO

G

ok

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

ok

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

G

ok

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

G

ok

G

ok

G

ok

G

4/24

The Shuffle
Generation of simple connected graphs

ok

G

ok

G

ok

G

ok

G

4/24

The shuffle seen as a Markov chain
Generation of simple connected graphs

¦ State space : all simple connected graphs with the right degrees

¦ Initial state : graph obtained after the first two steps

¦ Transitions : valid edges swaps

A

B C C

D

B

AD

. Theorem (Taylor 1982) :

This Markov chain is ergodic and symmetric. It

converges towards the uniform distribution over all

states

5/24

Convergence speed
The shuffle process

. Empirical result (Milo 2001, Gkantsidis 2003) :

After O(|G|) transitions, no difference can be made

between the graphs obtained at this point and the

graphs obtained with further iterations.

. But each transition takes O(|G|) time (connectivity test)

. Quadratic complexity

6/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

G

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

G

ok

G

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

G

ok

G

ok

G

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

. Speed-up : One connectivity test every T edge swaps

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

. Speed-up : One connectivity test every T edge swaps

??

GGG

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

. Speed-up : One connectivity test every T edge swaps

NO??

GGG

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

. Speed-up : One connectivity test every T edge swaps

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

. Speed-up : One connectivity test every T edge swaps

??

GGG

ok

G

7/24

Speed-up (Gkantsidis et al. 2003)
Generation of simple connected graphs

. Naive : One connectivity test for each transition

ok

G

ok

G

ok

G

ok

G

. Speed-up : One connectivity test every T edge swaps

?? ok

GGG

ok

G

7/24

Choice of the speed-up window T : heuristics
Speed-up the shuffle process

. Gkantsidis et al. (2003) : auto-adjust

Peform T swaps

last swaps
Cancel the

Yes

No

connected ?
T = T/2

T = T+1

. Efficiency ?

8/24

Benchmark
Speed-up the shuffle process

Size Naive Gkan.

1000 2.9 s 7.2

104 6 min 13.3

105 ≈10 hours 5

106 ≈40 days 2.6

9/24

Part II

Towards optimal heuristics

Formal analysis
Proposal of new heuristics

Formal analysis : Definitions
Towards optimal heuristics

. Disconnection probability p

NO

NO

NO

G G

G

ok

ok

ok

G

GG

1

1−p

p

0

10/24

Formal analysis
Towards optimal heuristics

. Disconnection probability p

NO

NO

NO

G G

G

ok

ok

ok

G

GG

1

1−p

p

0

. Success ratio r = (1− p)T

NO

G

ok

ok

G

G(1−p)

1−(1−p)T

T

. Speed-up factor θ = r · T = T · (1− p)T

10/24

Optimality condition
Formal analysis

. Speed-up factor θ = T · (1− p)T

0 100 200 300 400
0

5

10

15

20

25

30

35

40

Window T

S
pe

dd
−

up
 fa

ct
or

 θ

T = 1/p

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Success ratio r

S
pe

ed
−

up
 fa

ct
or

 θ

r = 1/e

θ is maximal when T = 1/p i.e. r = 1/e and θmax = 1
p·e

11/24

Analysis of the Gkantsidis heuristics
Formal analysis

. Auto-stabilisation of the window T towards a steady state

r · (T + 1) + (1− r) · T
2

= T

. The steady-state success rate is very close to 1

. Speed-up ratio obtained : θ ∼ √
θmax

12/24

The new heuristics
Towards optimal heuristics

Success ⇒ T = T ∗ (1 + q+) instead of T = T + 1

Failure ⇒ T = T ∗ (1− q−) instead of T = T/2

. Steady-state window only depends on the ratio q+/q−

. Optimality condition Tsteady = 1
p is satisfied ⇐⇒ q+

q− = e− 1

. Speed-up factor close to θmax

13/24

Benchmark
The new heuristics

. Definition of the optimal heuristics

. Comparison of the speed-up factors

n z θGk θ θopt

104 2.1 0.79 0.88 0.90

104 3 3.00 5.00 5.19

104 6 20.9 112 117

104 20 341 35800 37000

. 90% close to the optimal

14/24

Benchmark II
The new heuristics

Size Naive Gkan. Opt. Heur.

1000 2.9 s 7.2 11.4

104 6 min 13.3 50

105 ≈10 hours 5 11.8

106 ≈40 days 2.6 5

15/24

Part III

Prevent the disconnection

Decrease the disconnection probability p

Isolated pairs
Prevent the disconnection

. Idea

decrease p to raise the speed-up factor θ

. How?

Avoid the formation of isolated pairs

16/24

Isolated pairs
Prevent the disconnection

. Idea

decrease p to raise the speed-up factor θ

. How?

Avoid the formation of isolated pairs

16/24

Isolated pairs
Prevent the disconnection

. Idea

decrease p to raise the speed-up factor θ

. How?

Avoid the formation of isolated pairs

16/24

Isolated pairs
Prevent the disconnection

. Idea

decrease p to raise the speed-up factor θ

. How?

Avoid the formation of isolated pairs

16/24

Prevent the disconnection

. Idea

decrease p to raise the speed-up factor θ

. How?

Avoid the formation of isolated pairs

In practice, reduction factor from 1/2 to 1/20

16/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

¦ If not, validate the swap

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

¦ If not, validate the swap

. Time complexity O(K) per edge swap, instead of O(1)

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

¦ If not, validate the swap

. Time complexity O(K) per edge swap, instead of O(1)

. But the lower probability p causes a raise of the speed-up factor θ

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

¦ If not, validate the swap

. Time complexity O(K) per edge swap, instead of O(1)

. But the lower probability p causes a raise of the speed-up factor θ

¦ How much will p decrease ?

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

¦ If not, validate the swap

. Time complexity O(K) per edge swap, instead of O(1)

. But the lower probability p causes a raise of the speed-up factor θ

¦ How much will p decrease ?

¦ Intuition : K vertices are K-exponentially unlikely to be isolated

17/24

Going further : K-isolation tests
Prevent the disconnection

. Detect and avoid the formation of small isolated components

¦ For every edge swap, perform two K-limited breadth- or depth-

first search from the vertices that might have been disconnected

¦ If a small component is detected, cancel the swap rightaway

¦ If not, validate the swap

. Time complexity O(K) per edge swap, instead of O(1)

. But the lower probability p causes a raise of the speed-up factor θ

¦ How much will p decrease ?

¦ Intuition : K vertices are K-exponentially unlikely to be isolated

¦ Consequence : p would decrease exponentially with K ?

17/24

Effect on the disconnection probability
K-Isolation tests

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

Isolation test width K

D
is

co
nn

ec
tio

n
pr

ob
ab

ili
ty

 p

18/24

Adjusting the isolation test width K
K-Isolation tests

Empirically : p ∼ e−λK

θmax =
1

p · e ⇒ θmax ∼ eλK

. Exponential decrease of Ctests (connectivity tests complexity)

. Linear increase of Cswaps (complexity of edge swaps)

19/24

Adjusting the isolation test width K
K-Isolation tests

Empirically : p ∼ e−λK

θmax =
1

p · e ⇒ θmax ∼ eλK

. Exponential decrease of Ctests (connectivity tests complexity)

. Linear increase of Cswaps (complexity of edge swaps)

. The tradeoff consists in balancing both Cswaps and Ctests

Cswaps = O(K · |G|)
Ctests = O

(
|G|2
eλK

)
}

⇒ K = O(log |G|)

19/24

Adjusting the isolation test width K
K-Isolation tests

Empirically : p ∼ e−λK

θmax =
1

p · e ⇒ θmax ∼ eλK

. Exponential decrease of Ctests (connectivity tests complexity)

. Linear increase of Cswaps (complexity of edge swaps)

. The tradeoff consists in balancing both Cswaps and Ctests

Cswaps = O(K · |G|)
Ctests = O

(
|G|2
eλK

)
}

⇒ K = O(log |G|)

. Final complexity is O(|G| log |G|) instead of O(|G|2)
19/24

Adjusting the isolation test width K
K-Isolation tests

>

<

NO

<>

SAVE
the graph

swapsTPerform

−isolation tests
validated by

K

swapsC

connected ?
Still

YES

Restore the
saved graph

K0

T0

K

K

C
T = T

tests

* 2

Maybe not optimal, but works fine

20/24

Benchmark

Size Naive Gkan. Opt. Heur. Final

1000 2.9 s 7.2 11.4 22.3

104 6 min 13.3 50 510

105 ≈10 hours 5 11.8 2180

106 ≈40 days 2.6 5 7780

21/24

Part IV

Conclusion

Contributions

. Analysis of Gkantsidis et al. heuristics

. New heuristics, designed to reach the optimal

. Validation, benchmarks

. New idea to prevent the disconnection during the shuffle

. Log-linear algorithm. Implementation, benchmarks

22/24

Future work

. More formal proofs

. Extension to directed graphs

. Application to some dynamic connectivity algorithms

23/24

The End

Thank you

24/24

