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Rigorous randomness and linear complexity. . .

.. .But the graph isn't always simple and/or connected
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\ Plan

> State of the art
> Towards optimal heuristics

> Prevent the disconnection
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Part |

State of the art

Generation of random simple connected graphs
with prescribed degrees




‘ The global algorithm
Generation of simple connected graphs
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The global algorithm

Simple
Connected
Random

¢ Realize the degree sequence : linear (Havel-Hakimi 1955)
¢ Connection : linear number of edge swaps

¢ Shuffle : perform a certain number of random edge swaps that
keep the graph simple and connected
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The shuffle seen as a Markov chain

¢ State space : all simple connected graphs with the right degrees
¢ Initial state : graph obtained after the first two steps

¢ Transitions : valid edges swaps

O, ©
—
® )
(Taylor 1982) :

This Markov chain is ergodic and symmetric. It
converges towards the uniform distribution over all
states
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Convergence speed

> Empirical result (Milo 2001, Gkantsidis 2003) :

After O(|G|) transitions, no difference can be made
between the graphs obtained at this point and the
graphs obtained with further iterations.

> But each transition takes O(|G|) time (connectivity test)

> Quadratic complexity
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Generation of simple connected graphs

> Naive : One connectivity test for each transition
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Wthe speed-up window T : heuristics

> Gkantsidis et al. (2003) : auto-adjust

Cancel the
last swaps

Peform T swaps connected ?
T=T/2

T T:T+1}

_ v

> Efficiency ?
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\ Benchmark

Size Naive | Gkan.
1000 2.9 s 7.2
104 6 min 13.3
10° | ~10 hours 5
106 | ~40 days 2.6
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Part ||

Towards optimal heuristics

Formal analysis
Proposal of new heuristics



Formal analysis : Definitions
Towards optimal heuristics

> Disconnection probability p

o/‘ o/‘
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Formal analysis
Towards optimal heuristics

> Disconnection probability P

\.

> Success ratio r = (1 —p)?

> Speed-up factor § =r-T =T (1 —p)!
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Optimality condition

> Speed-up factor 0 =T - (1 —p)?
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Analysis of the Gkantsidis heuristics

> Auto-stabilisation of the window I’ towards a steady state

T
— =T
2

r-(T+1)4+(1—r)-

> The steady-state success rate is very close to 1

> Speed-up ratio obtained : 6 ~ /0,4
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The new heuristics

Success = T =T=x*(1+¢q") insteadof T=T+1

Failure = T=T=x(1—-q7) instead of T =1T/2

> Steady-state window only depends on the ratio ¢* /¢~

> Optimality condition Tsteqd, = % Is satisfied <—— g— —e—1

> Speed-up factor close to 0,4,
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> Definition of the optimal heuristics

> Comparison of the speed-up factors

n z | Ok 0 Oopt
104 12.110.79 | 0.88 | 0.90
10| 3 [3.00| 5.00 | 5.19
104 6 | 209 | 112 117
10% | 20 | 341 | 35800 | 37000

> 90% close to the optimal

—

Benchmark
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Benchmark |l

Size Naive | Gkan. | Opt. Heur.
1000 2.9 s 7.2 11.4
10 6 min | 13.3 50
10° | ~10 hours 5 11.8
106 | ~40 days 2.6 5
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Part Ili

Prevent the disconnection

Decrease the disconnection probability p



Isolated pairs
Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How 7

Avoid the formation of isolated pairs
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Prevent the disconnection

> ldea

decrease p to raise the speed-up factor 6

> How ?

Avoid the formation of isolated pairs

In practice, reduction factor from 1/2 to 1/20
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> Detect and avoid the formation of small isolated components
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Going further : K-isolation tests

> Detect and avoid the formation of small isolated components

¢ For every edge swap, perform two K -limited breadth- or depth-
first search from the vertices that might have been disconnected

¢ If a small component is detected, cancel the swap rightaway

¢ If not, validate the swap

> Time complexity O(K) per edge swap, instead of O(1)

> But the lower probability p causes a raise of the speed-up factor 6

¢ How much will p decrease ?
¢ Intuition : K vertices are K-exponentially unlikely to be isolated

¢ Consequence : p would decrease exponentially with K7
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Disconnection probability p
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Adjusting the isolation test width K

Empirically : p ~ e M

1
AK
Hmaa: = — = Hma:c ~ €

p-e€
> Exponential decrease of Ci.s:s (connectivity tests complexity)

> Linear increase of Cyyaps (complexity of edge swaps)
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\Adjusting the isolation test width K

AK

Empirically : p~e™

1
AK
Hmaa: = — = Hma:c ~ €

p-e€
> Exponential decrease of Ci.s:s (connectivity tests complexity)

> Linear increase of Cyyaps (complexity of edge swaps)

> The tradeoff consists in balancing both Cy4ps and Chests
Cswaps — O(K' |G|)

2 = K =O0O(log |G
CtestsO(g_K)} (g’ |)

> Final complexity is (|| log |G instead of O(|GI?)
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\Adjusting the isolation test width K

- T=Tx*2 <

T
o) TR
YES

Y Perform T swaps -
SAVE J—> validated by con%[éll:ted :

the graph - K-isolation test,
NO

' Restore the
- @‘ { saved graph

Maybe not optimal, but works fine
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\ Benchmark

Size Naive | Gkan. | Opt. Heur. | Final
1000 2.9 s 7.2 11.4 | 22.3
10* 6 min | 13.3 50 | 510
10° | ~10 hours 5 11.8 | 2180
106 | ~40 days 2.6 5| 7780
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Conclusion



Contributions

> Analysis of Gkantsidis et al. heuristics

> New heuristics, designed to reach the optimal

> Validation, benchmarks

> New idea to prevent the disconnection during the shuffle

> Log-linear algorithm. Implementation, benchmarks
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Future work

> More formal proofs

> Extension to directed graphs

> Application to some dynamic connectivity algorithms
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‘ The End

Thank you
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