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Chapter 1

Introduction to Active
Probing

1.1 The Internet Protocol

1.1.1 Introduction to IP

The Internet is a worldwide network that could roughly be described as a set
of hosts, all connected to a core network composed of interconnected routers.
When a host wants to send data to another one, it just gives it to the Internet,
with the destination address, and the data will automatically be forwarded to
the destination. Practically, a router that receives data addressed to X will
know which router to transmit the data to, and so on, until X receives the data.
This process is called routing.

Of course, the data cannot be sent ’as is’, some information needs to be
appended to make it understandable. That’s why data is cut into small pieces
(called packets), and every packet is encapsulated before its actual sending. This
encapsulation has several levels, as shown in Fig 1.1.

1. The destination host must be able to understand what this data is for.
Indeed, a host can have many processes receiving data at the same time.
Therefore, the raw data must carry some information about its function.
This is the purpose of the high-level protocols, such as UDP or TCP, for
example.

2. To carry this encapsulated data to the destination, the Internet has to
know information such as the destination address, the packet length, the
type of service (TOS) the user needs (high bandwidth, low latency, relia-
bility . . . ). This is provided by the IP encapsulation. The result is an IP
packet.

3. To be actually transmitted, the IP packet, considered as a byte stream,
has to be formatted, transmitted, and then extracted from the formatted
data. An Ethernet link simply adds a 14 bytes header before transmission
and removes it just after, but other links like ATM have very different
methods.
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Figure 1.1: The encapsulation sequence for a UDP packet transmitted via an
Ethernet link

IP, as described in [9], provides essentially automatic forwarding to the desti-
nation and automatic fragmentation and reassembly of oversized packets. How-
ever, an IP header actually carries more information than the destination ad-
dress, TOS, packet length and fragmentation status. This includes the source IP
address (the address of the sender), an identification field, a protocol field that
specifies the high-level protocol used, and eventual options. Another essential
field is the Time-To-Live (TTL), that will be decreased at every IP router. If
the TTL of an IP packet reaches zero, the packet will be dropped (A router
receiving a packet with TTL=1 will decrease the TTL to zero, and immediately
drop it). As the TTL can not exceed 255, this provides a security against infi-
nite loop that could result from bad routing. All this, and more, is described in
[1].

The aim of this project is to explore some new possibilities for probing the
Internet, based on a wider use of the various features that IP offers. Indeed,
IP is more complex than a simple destination tag, and we can take advantage
of that : if we can make the routers do something else than simple forwarding,
we should be able to find some tricky methods to extract information about the
router itself. In the remainder of this intoduction we will show some techniques
we already use for that purpose, and present some new ideas that should allow
us to extend the possibilities of active probing.

1.1.2 ICMP : Internet Control Message Protocol

As far as we have described IP, there is still no way to interact with the Internet.
That’s precisely the purpose of ICMP (Internet Control Message Protocol).
ICMP is implemented as a high-level protocol (see Fig 1.2) but is actually part of
IP. It was designed to provide various control features : error messages, requests
and replies. An example of error message is the ICMP packet a router will send
back to an host H if it received a packet from H that couldn’t be forwarded.
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Figure 1.2: Structure of an ICMP packet

This can occur for several different reasons, resulting in different types of ICMP
error messages. The one we will focus on later is the one generated by an IP
packet dropped because its TTL reached zero. And an example of request is
the one used by the well-known ping program : any host or router that receives
an ICMP Echo Request from X is supposed to send back an ICMP Echo Reply
to X. All the communication between routers (to update routes, or to detect
malfunctions, for example) are made with ICMP. See [10] or [1] for further
information about ICMP.

1.2 Active Probing : an Overview

Even ICMP offers to the user very limited possibilities to interact with Internet
routers. That’s why the only tools that non-privileged users may use to probe
the details of the Internet structure are based on end-to-end measurements. This
measurements are made at the end points of a connection : assistance from the
network core is not required. Active probing methods are particular cases of
end-to-end measurement, consisting of sending an artificial flow of traffic to a
controlled host, which can allow us to get some clues about what is inside the
blackbox.

BLACK BOX
INPUT SIGNAL OUTPUT SIGNAL

SENDER RECEIVER

cross−traffic rates ?

link bandwidths ?

Probe design : 

departure times

packet sizes

TTL 
arrival times

loss indications
...

Experimental data :

(Only information : number of IP routers)

Figure 1.3: A Black Box problem

The main desired characteristics of active probing methods are :

Non invasiveness : they should not add a significant stress on the network.
This is a necessary condition for a wide deployment of active probing tools.
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Efficiency : their duration should scale according to both the users needs and
the network volatility.

Various information may be extracted from the network, using active prob-
ing. This includes for example hop bandwidth, link rates, or network load. The
knowledge of those could allow a more efficient and reliable use of the Internet :

For users :

• Flexible Internet applications and protocols could adapt themselves to
available bandwidth variations. This could become crucial for the transfer
of data with real-time constraints and/or significant volume.

• The cost of Internet access is generally connected to its bandwidth. Users
need to check whether the service offered by their providers matches its
price.

For providers :

• Dynamic bandwidth and load estimation could be used to design more
efficient and robust routing protocols.

• Using traffic statistics, providers could locate sources of inefficiency and
plan capacity upgrades.

The complexity of the Internet makes it very hard for active probers to
extract useful information. Indeed, we want to extract information from the
routers we don’t control directly (otherwise, it would be easier to call the manu-
facturer). And we can be sure that, because of the extent of the Internet, there
will always be some cross-traffic (packets coming from other users) on a route
we don’t control entirely. The cross-traffic is of course unpredictable, and the
network load varies a lot, so that a packet sent one second after an identical
packet, on the same route, may take significantly more (or less) time to arrive
than its predecessor. The difference between routers, the diversity of the cross-
traffic (video, http, ftp), the complexity of the Internet connectivity graph, the
different types of links (optical, multiplexed, ATM, . . . ), all these factors are
part of the challenge that any active prober faces.

1.3 An Active Probing Project

Our active probing project belongs to CUBIN (Centre for Ultra Broadband
Information Networks), which is part of the Department of Electrical and Elec-
tronic Engineering of Melbourne University. In this section we give an example
of actual active probing. This will introduce the active probing background and
the concepts used in a convenient way.

1.3.1 Testbed

The following components are always present in active probing experiments :

• The Sender emits a scheduled and pre-defined probe stream. It must be
accurate enough to send probes at the desired times, with negligible error.
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Figure 1.4: Active probing components

• The Sender Monitor timestamps every probe departure. If this differs
from the scheduled sending time, the monitor is the one we trust.

• The Network forwards the probes to the destination. This can be any IP
network : LAN, Internet . . . .

• The Receiver Monitor timestamps every probe arrival.

To run an experiment, we first have to design a given probe stream, then to
give it to the Sender. When it’s done, the experimental data are collected in
the Monitors and the data can be post-processed for analysis.

1.3.2 Timestamping

Timestamping is very important as it is the only measurement we have, apart
from loss. Moreover, it requires a very good accuracy, as the Internet goes
faster and faster : the transmission of a 100 byte packet on a Gigabit link
(that are present on most of the international routes) is made in less than
one microsecond. Three levels of accuracy are available : the standard Linux
timestamping, the TSC-based timestamping, and the DAG card. The TSC-
based timestamping, based on the TSC register in modern CPUs, which is
incremented at every CPU tick (less than 1 nanosecond in any CPU faster than
1GHz), requires a TSC-modified environment, that is the combination of slightly
modified Linux kernel and NIC (Network Interface Card) driver. It gives very
good accuracy, by considerably reducing the noise coming from the operating
system and the clock skew. This is fully described in [2]. The DAG card,
developed by the Computer Science Department of the University of Waikato,
New Zealand, is a full-hardware solution, that acts as a passive tap recording any
network traffic without disturbing it. For more information, see [5]. Coupled
with a GPS timer, it provides “perfect” timestamping that allowed us to check
the accuracy of the previous solutions. Most experiments are made with the
TSC-based timestamping.

The timestamps we collect are the arrival times τ∗ and the departure times
τ (see Fig 1.3). The Departure (resp. Arrival) Time of a packet is the time
when the packet has fully left (resp. arrived in) the Sender (resp. Receiver)
As the clocks on the Sender Monitor and the Receiver Monitor may not be
synchronized, we use the inter-departure times (IDT) ti = τi+1 − τi and the

8



t *
1t 1 t 2 t *

2 time

#1 #2 #1 #2

Receiving packetsSending packets

inter−arrival time (IAT)

timestamps

inter−departure time (IDT)

end−to−end delay of packet #1

Figure 1.5: Timestamps and key values for active probing

Inter-arrival times (IAT) t∗i = τ∗i+1 − τ∗i of the packets, rather than the end-to-
end delays di = τ∗i − τi (the delays are the difference between the departure and
the arrival times of the packets). The delay variation δ of two packets is the
difference between the delays of both packets, which is exactly the difference
between their IAT and their IDT.

δi = di+1−di = ((τ∗i+1−τi+1)−(τ∗i −τi) = (τ∗i+1−τ∗i )−(τi+1−τi) = t∗i−ti (1.1)

1.3.3 Probe parameters

The probe stream is totally defined, probe by probe, by three parameters. For
probe i, we have :

• The inter-departure time ti of probe i

• The Size of probe i. Here, we call size the total length (in bytes) of the
probe, considered as IP packet (eg. link layer header excluded).

• The TTL of probe i.

Those three parameters allow us to design many experiments, and most of the
active probing techniques can be implemented using UDP probes with the above
parameters.

The inter-departure time t is more important than one would think at first
look. Typically, it is either big (i.e. around 1 second) or zero. A big IDT means
that the probes are going to be independant : the network conditions seen by
the probes won’t be correlated, thanks to their volatility. We can also send the
probes back-to-back. In this case, they will probably encounter similar network
conditions, especially if they stay back-to-back. To send back-to-back probes,
we set the IDT to zero. The actual IDT is not zero, but equal to the transmission
time (also called service time) s2 of the second packet. Setting the IDT to zero
is just more convenient. We can for example send a stream of independant pairs
of probes, where probes are back-to-back within pairs, as shown in Fig 1.6.

The back-to-back probes are not easy to send really back-to-back, since
the software needs to send two probes in a very short time (5µs for 56-bytes
probes). The software we use obtain various performance in sending back-to-
back probes, depending on the hardware. On Pentium-III 500MHz with Linux,
TSC-modified kernel 2.4.14 and 100Mbits LAN, we couldn’t send probes closer
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departure times

2 2s s

Figure 1.6: Independant Pairs of Back-to-Back Probes. The sizes of probes
represent their service time.

than 25µs. With an Athlon 1.7Ghz, Linux kernel 2.4.20-8 and 100Mbits LAN,
that was 7.5µs. But we can still use a trick : just before sending back-to-back
probes, we send a 1500 bytes packet to a LAN neighbour (so that it doesn’t
interfere with our probes on the Internet route). This will cause our two probes
to be queued in the NIC sending queue, because a 1500 bytes packet takes more
than 100µs to be sent. And as soon as the big packet is finally sent, the two
probes are sent just after, hopefully back-to-back. We ran some tests with the
DAG card to validate this method, and the results were satisfying (at least 99%
of the probes were really back-to-back)

1.3.4 Experimental data analysis

When an experiment is done, the experimental raw data (probes departure and
arrival times, τi and τ∗i ) is first filtered to eliminate some outliers results, such
as lost probes (i.e probes that the Receiver Monitor didn’t see), or probes that
have not been sent at the correct time, for example. Then, we can analyse
the filtered data the way we want to. To give a practical example, a typical
experiment is to send many probe pairs with the same given inter-departure
time, and to plot the inter-arrival time histogram. The two following graphs are
from two such experiments, both made with 114 bytes (912 bits) probes, sent
in pairs, with an IDT of 50ms for the first one and of 0ms for the second one.
The route was from the University of Waikato, New Zealand, to CUBIN.
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Figure 1.7: Experimental traces : histogram plot of the inter-arrival times t∗i of
pairs that were sent with fixed ti (left : ti = 50ms, right : ti = 0ms)
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The first graph shows a nice symmetric distribution centered at 50ms. This
is typical of the independance signature, as the delay variation δi = t∗i − ti =
di+1 − di of the probes is the difference between two quantities (the delays di

and di+1) that both follow the same distribution. This is true thanks to the
independance of di and di+1.

The second graph exhibits an interesting peak at 9µs. We also see that this
peak is at the smallest inter-arrival time observed. The immediate conclusion
is that it represents the probes that arrived as close as possible : back-to-back.
Therefore, the peak’s location is the inter-arrival time of back-to-back pairs,
which corresponds to the transmission time of the second probe in the pair. We
can also guess the last link bandwidth, in this case we obtain, with the peak
at 9µs and a size of 912 bytes, a bandwith of ∼ 100Mbits. This is what we
expected.

bandwith =
2nd probe size

Peak location
(1.2)

1.4 Aim of the Project : A Wider Range of
Probing Tools

Many techniques can be implemented on this basis, like the packet quartets
method [3], that gives an estimation of router bandwidth. However, it makes
sense to enlargen the playground even if it hasn’t been fully explored yet. In this
project, the aim was to gather as many ideas as possible to expand the set of
active probing techniques. This includes creating new methods, of course, but
first of all we had to upgrade our active probing basic tools in order to give us
more degrees of freedom in the design of experiments. This is what is described
in this section.

1.4.1 Choosing the protocol

All the probes we had been using so far were UDP packets. This protocol was
chosen because of :

1. its simplicity

2. its flexibility : the smallest valid UDP packet (eg. with no data) is only
28 bytes long (link layer header excluded), when the smallest TCP is 40
bytes long. Since the smallest valid IP packet is only 20 bytes long (a
simple header), it makes sense to be as close from this limit as possible.

3. its wide implementation : UDP belongs to the three most used Internet
Protocols (TCP, ICMP, UDP)

However, it can possibly make sense to use other protocols, and there’s no reason
to limit ourselves to UDP.

1.4.2 Spoofing

Probes are either direct, i.e. they reach the receiver, or hop-limited, i.e. they
are dropped on their way to the destination because of their too small TTL.
Actually, they are not simply dropped : the router that drops them also sends
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an error message – an ICMP Time-Exceeded packet – back to the sender, as
shown in Fig 1.6.

Hop A Hop B

Hop−limited Probe

ICMP−TE

Direct Probe

Sender Receiver

Figure 1.8: Direct and hop-limited probes

Now, if we change the source address of the hop-limited probes, and replace
it by the destination address, the ICMP error message will be sent to the des-
tination, following the same path as direct probes. Thus, spoofed hop-limited
probes can be considered as direct probes that are just transformed in an ICMP
Time-Exceeded on their way, as shown in Fig 1.7. This is another interesting
feature that should be implemented.

Sender

ICMP−TE

Hop A Hop B Receiver

direct probe

hop−limited spoofed probe

direct probe

Figure 1.9: Direct and spoofed hop-limited probes

1.4.3 Expanding Ping

Another possibility is to use the classical ping. To ping a router, we simply send
an ICMP Echo Request packet addressed to it, and it will send an ICMP Echo
Reply packet back to the sender. Using spoofing, the Echo Reply answer can also
be sent to the receiver. This is very similar to the spoofed Time Exceeded idea,
but the router is no longer targeted with TTL, but directly with its address.
And it’s important to notice that the Echo Reply size is always the same as the
Echo Request size, while the size of an ICMP Time Exceeded is (in most cases)
fixed to 56 bytes.

1.4.4 Using Reordering

After enlarging the diversity of the probe parameters, we can also extract more
information from the probe arrivals than only inter-arrival times. Reordering,
which is often considered as a pathological behaviour, is also extra information.
Moreover, since it seldom happens, two reordered packet should have very few
chances to reorder again. Such an event is interesting, because, contrary to

12



of the timing analysis techniques, it doesn’t suffer from any distorsion caused
by the cross-traffic noise on the rest of the route. Therefore, during the post-
processing of the results, we shouldn’t always drop the reordered probes : they
carry an information that is much more meaningfull than a single timestamp.
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Chapter 2

Active Probing’s Software

2.1 The software ‘as it was’

All our active probing tools have been grouped in a single package, the Linux
Sender Package. It contains all the software for the standard Linux solution
as well as for the TSC-enhanced solution. We can basically split the package
programs in three categories : sending, monitoring, and converting monitor out-
puts (post-processing). Here, we will give a brief description, for more complete
documentation, look at the active probing online documentation ([4]), or see
the Linux sender package README file, also available on the webpage.

2.1.1 Sending

In the standard Linux solution, two different programs that communicate via a
memory shared segment achieve the sender’s function.

linuxSend will read a probe stream description file and write this description
in the shared memory segment. The format of the input file is a sequence
of probe descriptions, and each probe description is a vector of three 64-bit
doubles.

Data =




t1 Size1 TTL1

t2 Size2 TTL2

...
...

...




linuxps must run first, as it waits in an infinite loop to receive some probe
stream data from linuxSend. When it does, it starts sending, waiting
between each probe for the given inter-departure time.

Probes are all UDP packets, with the same source and destination port, used
as a tag : any UDP packet with the same port will be considered as a probe by
the monitors. They are sent using a standard UDP socket, that requires no root
privilege, and the TTL is set using the setsockopt() function. The length of
the packet is adjusted by choosing the size of the UDP data, the data itself is
filled with zeros. Each probe must of course get a unique identifier if we want
to be able to detect loss, duplication, or reordering. This probe identification,
called serial number, is stored as an integer in the 32 first bits of data of the
UDP packets.
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The TSC enhanced solution works in exactly the same way, the only differ-
ence is that the timing is done using the CPU’s TSC register instead of the Linux
function gettimeofday(). The programs names are also different : tsclinuxps
and tsclinuxSend.

2.1.2 Monitoring

In the standard Linux solution, the user can use tcpdump as sender and receiver
monitor (for more information about tcpdump, see [6]). Since it produces quite
good timestamping, and provides filtering that allows us to consider only the
probe packets, no other monitor has been developed. For example, the following
command line produces a record of every UDP packet with port 8888 detected
by the computer.

tcpdump udp port 8888

But the standard tcpdump cannot use the TSC timestamping, and that’s
why two monitors have been developed for the TSC solution :

tscreceiver uses a UDP socket set with the appropriate port to receive probes,
that are timestamped with the ioctl() function, which allow us to access
the timestamp created by the TSC-modified NIC driver. Its output is a
.tscdt file that contains a raw array of probe receipts, in each receipt we
have the timestamp and the probe’s serial number. It can be used as a
receiver monitor only.

TSC-tcpdump can act as a sender or receiver monitor. It is a modified tcp-
dump that takes advantage of the TSC timestamping available with the
TSC environment.

The DAG monitoring is not included in the package since the network mon-
itoring, which is the primary function of the DAG card, is always implemented
in the DAG packages.

2.1.3 Post-processing

The output files from the monitors have three possible formats : the .tscdt files
that come from tscreceiver, the tcpdump standard output, or the DAG card
output. They all need to be converted in the general .dt format that is simply a
sequence of arrival times stored in 64 bits double-precision floats, starting with
the first probe (eg. the probe with serial number 1), and ending with the last
probe monitored. Any lost probe has an arrival time of −1, and any duplicate
or late probe (i.e. that arrived after a probe with a bigger serial number) is
considered as lost. No filtering need to be done as the monitors already achieve
that function : all the packets they monitored were probes.

The conversion from .tscdt files, done by tscdttodt is immediate, since it
contains a set of probe arrival times and serial numbers. This is not true with
the tcpdump outputs, that only contains a sequence of records for each probe
received. To convert them, tcpdumptodt has to extract the timestamp and the
serial number from each record, which, provided that the serial number is in
the first 32 bits of UDP data, is quite easy thanks to the -x option that forces
tcpdump to include a snapshot of each packet captured, byte per byte. Here is
an example of tcpdump output :
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16:34:44.706726 134.78.129.1.845 > 134.78.129.87.649: udp 64 (DF)
4500 005c fbb5 4000 ff11 7a3d 81c7 8101
81c7 810d 034d 0289 0048 6f9d 3f19 cce0
0000 0001 0000 0000 0000 0000 0000 0000
0000 0000 0000 0001

The conversion from the DAG output varies with the DAG implementation.
On most of them, we have the possibility to pipe the DAG output to tcpdump
input, thanks to the DAG team that provides this tool. This allow us to let
tcpdump do the hard work of filtering probes and producing an output we are
able to convert. Even when this feature is not available, the DAG package
includes at least a filter tool that can make the filtering by itself. However, in
this case, we still have to convert the DAG output to the friendly .dt format.
This is done by dagtodt, that extracts the probes serial number in a similar way
to tcpdumptodt.

Any further treatment of the .dt files is let to the user. We actually use
Matlab, that can at the same time interpret these file and analyse the data.

2.2 Upgrades

To achieve the aim of the project, that is to enlargen the playground of active
probing, we need a global upgrade of the whole package : it was based on UDP
probes only that were easy to send, to receive, and to filter. If we want to
deal with spoofed ICMP probes, we need to design a new sender, but also new
monitors, and therefore new converters.

2.2.1 ‘Make your own’ IP packet

To implement every new feature, especially Spoofing, we had to get rid of the
restrictive predefined socket types, that don’t give us access to all the IP options.
Instead, we now use a socket of type RAW, that gives us also full access to the
high-level protocol header, and even to the IP header (see Fig 2.1). Actually,
it forces us to build both of them entirely. The only field that will (or may)

4−bit

0 15 16 32

version
4−bit header

length
8−bit type of service

(TOS)
16−bit total length (in bytes)

16−bit identification (ID)
3−bit
flags

13−bit fragment offset

8−bit time to live
(TTL)

8−bit protocol 16−bit header checksum

32−bit source IP address

32−bit destination IP address

Figure 2.1: The IP header structure, without options

automatically be computed by the kernel, if they are left to zero, are the IP
checksum, the ID field and the source IP address. Doing this, we are now able
to specify any source IP address instead of the actual one. Setting the probe’s
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TTL is also very easy, and choosing the protocol as well. It also improve our
sending accuracy, as we do part of the usual kernel work (i.e. build the UDP
& IP header, compute checksums. . . ), which duration could vary with different
kernel versions.

Now, let’s see what we can do about the probe serial number. We can get
rid of the 32 bits of data in the payload that were necessary to encode it, by
storing this serial number in the ID field of the IP header instead. The only
problem is that the 16 bits of the ID field could be too narrow for this purpose
: on very big experiments, it could be possible to use more than 216 = 65536
probes. However, we can just make the ID field loop back to 1 when it reaches
65536, because the probe stream stays more or less well ordered : it is hard to
imagine that a probe could be reordered more than 65536 probes after or before
its original place.

The other important information that the probes have to carry is the au-
thentification key. This is the value that all of our probes will carry, and that
will allow us to recognize them among all the packets that our monitor could
receive. With UDP probes, the old package used the port number to carry the
authentification key. We can still do that. Anyway, we have to write the whole
UDP header, that contains the port number, so it is not a problem to keep the
old authentification field. It would have been better to write it in the IP header
(to be independant from the UDP protocol), but there’s no room for it.

In the end, we have a C function write_ip_header() that only takes source
and destination IP addresses, the TTL, the probe size (IP packet size), the ID
and the protocol as arguments and that writes a complete IP header, setting
the unspecified fields to default values.

2.2.2 Expanding the probe family

Because of the full control of the packet encoding, we can now build probes
based on any protocol. But what for ? Actually, at least three types of probes
could be interesting :

• ICMP Echo Request will allow us to ping a router

• ICMP Echo Reply, that doesn’t interact with routers more than UDP, is
an alternative to UDP probes

• ICMP Time Exceeded is also such an alternative, slightly different because
when the TTL of an ICMP-TE packet reaches zero, the packet is silently
dropped, i.e. no ICMP-TE is generated. This was designed to avoid infinite
loops.

The ICMP Echo packets are convenient because their structure is, as shown in
Fig 2.2, very similar to UDP packets. Thus, their ICMP header contains two
fields, the sequence number and the ICMP Identification, both 16 bits, that can
replace the UDP source and destination port for the probe authentification.

ICMP Time exceeded packets are normally only generated by routers when
a packet must be dropped because its TTL has reached zero. That’s why they
have been designed to carry at least the IP header of the original packet, plus the
8 first bytes of the packet datagram, as shown in Fig 2.3. Since these 8 bytes
are usually the first 8 bytes of the higher-level protocol header, they should,
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ICMP Echo Reply (type 0) or Echo
Request (type 8) UDP packet

0 15 16 32

code (0)type (0/8) ICMP checksum

ICMP identifier Sequence number

data (if any)

IP header 20 bytes

8 bytes
ICMP Header

0 15 16 32

data (if any)

IP header 20 bytes

source port destination port

UDP length UDP checksum
8 bytes

UDP Header

Figure 2.2: Comparison between ICMP Echo packets and UDP packets

combined with the IP header, help the user that receives an ICMP-TE to know
which packet was dropped.

150 16 32

20 bytes

type (11)

IP header

code (0/1) ICMP checksum

Unused (must be 0)

IP header of the dropped packet

8 bytes

20 bytes

First 8 data bytes of the dropped packet

8 bytes
ICMP Header

Figure 2.3: A typical 56-bytes ICMP Time Exceeded packet

Note that our probes (UDP or ICMP Echo) carry all their information in the
28 first bytes : the serial number is in the IP header, and the authentification
key is in the 8-bytes UDP or ICMP header. Therefore, receiving an ICMP-TE
coming from a dropped packet, we are able to recognize it as a dropped probe,
and get the dropped probe serial number.

We can also use that to send ICMP-TE probes, what was not so easy because,
unlike ICMP Echo probes, there’s no room for the authentification key in the
ICMP-TE header. But we can just send the ICMP-TE probe as if it had been
generated by one of our probe, dropped by a router. Which means, we include
a faked probe in the 28 bytes following the ICMP-TE header. The monitors
will be able to recognize it as a probe in the same way as they would do it for
ICMP-TE really coming from a dropped probe.

Another limitation of the old package is that a single experiment could only
send probes to a single destination. What if we want to send UDP probes to
our receiver, and, in the same experiment, ping a router of the corresponding
route ? That’s why it should be useful to send some probes to an alternative
destination IP address. This alternative IP address will be given as argument
to the [tsc]linuxps.

Another option could be not to compute the UDP or ICMP checksum, or to
give a false checksum. That could provoke some reactions if the routers check
it on the way.

To make all this options available without compatibility loss, we have to
keep the old probe stream description file format, so that old input files are
still recognized. But with this format, a probe is only described with its inter-
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departure time, its size, and its TTL. The trick is to use the unused bits in the
TTL encoding : a TTL is always coded on one byte, and the input file uses 8
bytes to encode it. Practically, we use following bits (bits 0 to 7 are already
used for the TTL) :

• bit 8 : spoofing flag. If set, the probe’s source address will be spoofed.

• bit 9 : Echo Reply flag. If set, the probe will be an ICMP Echo Reply.

• bit 10 : Echo Request flag. If set, the probe will be an ICMP Echo Request.

• bit 11 : No Checksum flag. If set, the UDP/ICMP checksum won’t be
computed.

• bit 12 : Alternate Destination flag. If set, the probe will be sent to the
alternative destination IP address. We could have coded the alternate
destination address itself instead of only a flag. This will be part of future
enhancements.

If all the flags are clear, the probe will be a UDP packet, exactly as the old
version (except that the serial number will be in the ID field instead of being
stored as data). In addition, if the TTL is zero, then instead of sending the
probe we send the ICMP Time Exceeded that would have been generated if the
sender was a router and if the probe had reached it with a TTL of zero.

Sender Hop A Hop B

ICMP−TE

ICMP−TE

Receiver

UDPUDP

hop−limited Echo Reply

hop−limited spoofed UDP

Alt_dst Echo Request

Echo Reply

Echo ReplyAlt_dst spoofed Echo Request

hop−limited ICMP−TE

Echo Reply Echo Reply

Figure 2.4: Some of the different kinds of probes we can send. Crosses are probes
dropped by a router because of their expired TTL. Dots are Echo Requests that
arrive at their destination.

All those features have been grouped in a single file, spoofing.c, the key
function is send_probe() that takes following arguments : the destination IP
address, the alternate destination IP address, the source IP address to use for
spoofed probes, the source IP address to use for normal probes, the authentifica-
tion key (UDP port or ICMP identifier), the serial number, the TTL (including
the flags), the size of the probe, and the optional data to include.

We’ve also added options to the linuxps and tsclinuxps. For instance,
the following command line starts the sender with the destination address
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receiver.cs.mit.edu, an authentification key of 7777 and defines the alter-
nate destination address to be 63.45.123.78, the source address for spoofed
probes to be spoof.cs.mit.edu, and the source IP address for normal probes
to be 127.0.0.1.

tsclinuxps -a 63.45.123.78 -s spoof.cs.mit.edu
-S 127.0.0.1 receiver.cs.mit.edu 7777

2.2.3 Monitoring and Post-Processing

Now that we can send these different types of probes, filtering the packets to
recognize the ones that are probes becomes more difficult. The main difficulty is
that there’s no standard way to extract the authentification key from all kinds
of packets : UDP and ICMP Echo carry it in the same place, but it’s not the
same for ICMP Time Exceeded. Neither tcpdump’s options nor socket types
(for tscreceiver) allow such a powerful filtering. That’s why we included in
the new package the packet_is_probe() function that takes a raw packet as
argument, and tests if it is a probe or not, checking the authentification key at
the right place, depending on the packet type. Moreover, if the packet is indeed
a probe, packet_is_probe() extracts the probe’s serial number from the raw
packet. The Monitors now filter the probes in a different way :

• tscreceiver uses a RAW socket (instead of an UDP socket) that receives
any kind of packet, but it will record a probe arrival only when the packet
is acknowledged by packet_is_probe()

• tcpdump cannot filter probes properly, so it just captures any packet that
could be a probe (like any UDP packet with the right port number and
any ICMP packet)

The post-processing of the tcpdump output requires some filtering. tcpdumptodt
now uses packet_is_probe() for that purpose. Otherwise, the only change in
the post-processing of the data is that we don’t want to drop the reordered
packets any more. Besides, it can still be done by the user afterwards. This
implied a few modifications in both tscdttodt and tcpdumptodt.

2.2.4 Compatibility

Most of the new features are optional :

• The IP addresses are given to linuxps and tsclinuxps as options

• To send the new kinds of probes, we have to set some flag bits in the input
file that were always zero before.

But still, even if we don’t use the optional features, there are still a few
modifications :

• The serial number is in the ID field now

• The type of socket used by linuxps, tsclinuxps and tscreceiver now
require more user privileges.
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• The data will not be filled with zeros, but with random bytes. This will
avoid compression. This could eventually be an option in futures versions.

For a user with superuser privileges, any script that worked with the old
package will work with the new one. More precisely, if the user gives an old
probe description input file that he used with the old package, the new one
will send the same probe stream, and the output .dt files will have the same
format. The only constraint is to use the same package for an experiment : it
is impossible to use the new senders and the old monitors, for example. The
compatibility works also backwards : any input file designed for the new package
that doesn’t take advantage of the new features can be given to the old one.

2.2.5 Future Enhancements

We left undone some possibly interesting enhancements :

• Use TCP packets. This could be very useful, since TCP, as the most
used protocol, could have a higher priority in some future TCP-optimized
routers.

• Deal with IP fragmentation. This is a way to indirectly interact with
routers, like TTL. In a ideal case, this could even allow us to transform a
single probe to a pair of back-to-back probe in the middle of the route (if
the packet is fragmented on the way).

• Optimize the sending software to be able to send back-to-back probes
without queuing them behind a big packet. We could also include this
queueing trick as an easy-to-use option.

• Use the IP options to enlarge the IP header. This will causes the ICMP-
TE created by dropped probes to be bigger (they have to contain the full
original IP header).

• Encode the alternate destination address in the input file instead of giving
it to the sender program as an argument. This will allow us to send probes
to much more than two destination in the same experiment.
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Chapter 3

Reordering : A New
Direction for Active
Probing

With the new active probing package, promising techniques are finally available.
We focus here on methods that use reordering. Indeed, if we can make some
packet reordering happen at a specific location in the route, that could provide
some very efficient measurement techniques on the router concerned.

3.1 ICMP Time Exceeded

The method described in this section was the original idea of this project. This
idea first led us to develop the software in order to implement it, and this
development then become the principal aim of the project. In this section, we
present some of the possible applications of the enlargment of active probing
tools based around this theme.

3.1.1 Methodology

We send identical pairs of probes. Here we describe what happens for one pair
(see Fig 3.1). The two probes are sent back-to-back. The second probe is direct.
The first probe is hop-limited, and spoofed : it will be dropped at a given router
h (that we can choose with the probe’s original TTL), and an ICMP Time
Exceeded will be generated by the router h and sent to the destination, thanks
to the spoofing.

ICMP Time Exceeded takes time to be generated, so that the second probe
has a chance to arrive before the ICMP is ready, and to pass it. This chance
essentially depends on the time that the second probe will take to arrive at the
router. This time will of course depend on the service time s2 of the second
probe, that is the time needed by the previous router h− 1 to send it entirely.
The service time s2 is proportionnal to the second probe size p2.

s2 =
p2

µh−1
(3.1)
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Figure 3.1: Reordering of back-to-back pairs of spoofed hop-limited probes fol-
lowed by direct probes.

where µh−1 is the bandwidth of the link that arrives at router h. That’s why
we should expect to observe less reordering when the second probe is bigger.

3.1.2 What we could expect

To make it more simple to understand, we will first assume the following : (the
notations are the usual ones, the ‘arrival’ event is just the arrival at the router)

• Packets that follow the same route are never reordered.

• The ICMP-TE generation takes a constant time gh

• The ICMP-TE generation is made separately from the router’s packet
forwarding process, so that packets can pass through the router meanwhile.

• This treatment starts when the first probe has fully arrived in the router
(at time τ∗1 ).

• The ICMP-TE is sent before the second probe if, and only if it is ready
before the second probe has fully arrived :

reordering ⇐⇒ t∗ < gh (3.2)

• The two probes arrive back-to-back at the router :

t∗ = s2 (3.3)

In such an ideal case, the experiment would produces a result like the one shown
in Fig 3.2 :

Indeed, elementary manipulations of the previous equations give us :

reordering ⇐⇒ t∗ < gh ⇐⇒ s2 < gh ⇐⇒ p2

µh−1
< gh (3.4)
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Figure 3.2: The reordering signature, in an ideal case

and finally

reordering ⇐⇒ p2 <
gh

µh−1
(3.5)

Now, the critical size ch = gh

µh−1 , that is easily observable on Fig 3.2, can give us
the router bandwidth, if we know its ICMP generation time gh : bandwidth = ch

gh

If we suppress the first two assertions, and accept that natural reordering
can occur, and also that the ICMP-TE generation time can slightly vary; if we
also admit that the probes can arrive with any space between them, even a very
small one, we could still obtain the same-shaped curve, with some noise. This is
represented in Fig 3.3. The important thing is that, hopefully, the critical size
could stay visible, if the experimental noise is not too big.

100%

0

re
o

rd
er

in
g

 r
at

io

critical size

back−to−back ratio

size of the 2nd probe

Figure 3.3: The reordering signature, in a less ideal case

3.1.3 Weaknesses

• Spoofing-protected gateways don’t forward spoofed packets. These pro-
tections are becoming a standard security requirement : we were able
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to run experiments that used spoofing on only a short part of a single
route. We are far from the worldwide ‘testbed’ that the Internet is. How-
ever, if one has enough influence to open the local gateways between ones
computer and the international network, he can send spoofed packets any-
where, since the international routers cannot detect spoofing as easily as
local gateways, because they are used to dealing with a much bigger set
of source IP addresses.

• Ethernet packet cannot have all sizes : the minimum is 48 bytes and the
maximum is (usually) 1500 bytes. If the critical size is outside this (quite
narrow) range, we won’t be able to determine it.

• Like any active probing method based on reordering, a considerable noise
could come from natural reordering, if it occurs on the route.

• The behaviour of the router when it generates the ICMP-TE packet is
unknown. The model of a simple delay may be too simple.

3.2 ICMP Echo Request

3.2.1 An alternative to ICMP-TE

Why not taking advantage of the variety of probes we can use ? Sending a
spoofed ICMP Echo Request to the same router h, it will generate an ICMP Echo
Reply and send it to our destination. This is similar as a spoofed hop-limited
probe. This similarity allows us to easily copy ICMP-TE method described in
the previous section. Though, we don’t expect to get the same results, because
routers might most probably process Echo Requests addressed to them and
packets with TTL = 0 in a different way. This assertion is strongly encouraged
by [8] that advises the routers to separate packets that are destined to them
and packets that should be forwarded before doing any other processing (apart
from some basic IP header checks). This difference could causes many aspects
of the previous experiment to change. First, the Echo Reply generation time
g′h might be significantly different from the Time Exceeded ’s gh. Moreover, the
Echo Reply is exactly as big as the Echo Request, unlike the ICMP-TE that is
most of the time 56 bytes long. This could make the Echo Reply generation
time vary with the second probe size : g′h = f(p2)

Having an alternative method is really useful because it gives us a lot more
flexibility. And lack of flexibility is one of the big weakness of the ICMP-TE
reordering technique.

3.2.2 Combining with ICMP-TE : Get rid of spoofing

If the behaviours of ICMP-TE and Echo Reply are different enough, we could
even combine them in the same experiment. Instead of sending pairs of one
direct probe and one spoofed hop-limited (or Echo Request) probe, we could send
pairs of one spoofed hop-limited probe and one spoofed Echo Request probe. For
example, if the first is the hop-limited one, reordering may occur if g > g′ + s2.
This adds some flexibility again.

But the best part is that this allows us to get rid of this annoying spoofing
that closes so many routes to us : indeed, if we don’t spoof the both probes,
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Figure 3.4: Reordering between ICMP Time Exceeded and Echo Reply packets
one a “one way-return” route.

the ICMP-TE and the Echo Reply will both return to the sender (see Fig 3.4)
Since they will take the same route to go back, this method should work exactly
as when using spoofing.

3.3 Experimental results

The goal of this project is not to develop a couple of reliable active probing
methods. Our approach is more like an exploration of a wide range of possibil-
ities. That’s why we didn’t force ourselves to deeply analyse the experiments
we ran. We only want to see if an experiment seems to work.
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Figure 3.5: ICMP-TE reordering, experimental. Above : reordering signature
with UDP probes. Below : with ICMP Echo Reply probes

The first experiment we ran was the ICMP-TE reordering method. The
results are shown in Fig 3.5. To remember the experimental methodology, see
Fig 3.1. The results we could expect are also shown in Fig 3.3. The experiment
was ran with two types of probes : UDP probes and ICMP Echo Reply probes.

The results are not very encouraging : both curves don’t exhibit any criti-
cal size, and, even worst, the two curves are very different. This second point

26



proves that ICMP Echo Reply and UDP are not processed the same way on
every router. This discouraged us of trying to understand the shape of each
signature. And because of the very small set of routers we could run this exper-
iment on (because of the spoofing protections we described earlier), we weren’t
able to collect other experimental results like this : the two other routers had
respectively 100% reordering with every size for one of them and no reordering
at all for the second one. Repetitive failures of other experiments have led to the
conclusion that something must be wrong in our simple model for the ICMP-
TE reordering. That’s why we stopped further investigations to first check what
was going on with those ICMP packets, as we describe in the next chapter.
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Chapter 4

ICMP Behaviour

In order to use the tools we provided for active probing, we had to know more
about ICMP behaviour, since we had clues that ICMP and UDP packets were
not processed the same by routers. This is fully part of the project, as the
knowledge of ICMP will actually help us to enlarge the active probing play-
ground :

• It will allow to validate or invalidate some active probing method ideas
based on ICMP,

• It may give us some indications about new methods based on specific
ICMP characteristics.

4.1 ICMP End-to-End Delay

The first thing to check was that ICMP packets and UDP packets have the same
end-to-end delay on any route. To compare the end-to-end delays of two types
of packets, the experimental methodology is quite simple : we sent independant
(well spaced) pairs. In each pair, the first packet is one of the first type, and
the second one is of the second type.

These packet pairs are sent with a big IDT t so that they are independant.
So, we are not really sending packet pairs, we actually send independant packets.
We are talking about pairs here because the odd probes are of the first type, the
even ones are of the second type, so that, to compare the end-to-end delay of
the two types of probes, we ‘group’ the probe departure and arrival-times τi, τ

∗
i

by pairs : (τ2i, τ2i+1), (τ∗2i, τ
∗
2i+1). Now we measure the inter-departure times

ti = τ2i+1 − τ2i and inter-arrival times t∗ = τ∗2i+1 − τ∗2i, and compute the delay
variation δi = t∗i − ti, which is the difference between the two end-to-end delays
within pairs.

To suppress the cross-traffic noise that makes a single measurements mean-
ingless, we repeat this several times, and keep the average delay variation δ.

4.1.1 Experiments on one route : ENS → CUBIN

In Fig 4.1 is plotted a histogram (left) of all the delay variations observed
between UDP and ICMP Echo Reply probes of the same size, and an histogram
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(right) of the delay variations observed between identical packets (ICMP Echo
Reply in this experiment). Both experiment were done on the same route from
the École Normale Supérieure (ENS), Paris, to CUBIN.
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Figure 4.1: Delay variation distribution. Left : between UDP and ICMP Echo
Reply probes. Right : between identical ICMP Echo Reply probes.

• The second trace (right) is exactly the independance signature (see Fig
1.5) : we see a symmetric-shaped distribution centered at zero. Actually,
this experiment was not run to check that two identical packets will be
processed identically, but to get an estimation of the noise encoutered by
the first experiment.

• The first trace looks roughly the same, but with a big difference : its
position. The distribution is centered at a positive value around 0.75ms :
this is our average delay variation δ.

Note that in both cases, a small (but not negligible) number of values were far
out of the plotted window. This often happens in active probing experiments :
exceptional router load may occur at any time, provoking extra queueing delays
that result in making one of the two probe significantly late.

Now that we made sure that ICMP were indeed slower than UDP, we can
work a little more on that delay variation, let’s call it the ICMP excess delay.
Even if we don’t know where it comes from, we can assume that δ is the sum
of three terms (see Equation 4.1) :

δ = δmin + δnoise + δsize (4.1)

δmin is the part of ICMP excess delay that is directly related to its cause. It is
the minimum delay variation that we could observe, in ideal conditions. δnoise is
the part of ICMP excess delay that varies, depending on the network conditions
: load, congestion. . . . This term is positive, and equal to zero in the ideal
conditions (when ICMP packets are processed the fastest). δsize is the packet
size dependance term. This will probably increase with the packet size.

Now, we want to get a good estimation of δ. The choice of a good averaging
operator deserves some attention. Actually, we had tried a few ones :

• The simple mean is much too sensitive to noise provoked by exceptional
queueing delays.
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• The robust mean, obtained by filtering out the very big values (like the
1% extreme percentiles), is much better. However, it still suffer from
the outliers assymmetry. On the graph (Fig 4.1, left) we can see that
the distribution of delay variations at the foot of the main peak are not
symmetric : It seems that ICMP can encounter extra queueing more often
than UDP. This will cause the robust mean to give inaccurate results.

• The median of the delay variations was a better operator. It is slightly
better to take the median of the delay variations between UDP and ICMP
than taking the difference between the median of the UDP delays and
the median of the ICMP delays : in the first case, we estimate the delay
variation with probes that were not very far in time, and thus suppress
the error due to long-range variations that occur in the route during the
experiment (like people starting to download a movie). However, these
two operators always gave almost the same results.

To estimate the number of pairs required to get a good estimation of δ, we
compared the value obtained by averaging more or less pairs. This is plotted
in Fig 4.2 : the graph on the left refers to UDP-ICMP delay variation, and the
one on the right refers to the ICMP-ICMP delay variation (noise evaluation).
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Figure 4.2: Evaluation of δ with variable number of values used for averaging.
Left : UDP - ICMP Echo Reply delay variation. Right : identical ICMP Echo
Reply delay variation.

The noise looks not too big : with a couple of thousands of pairs, we can
already get a quite reliable estimation : δ ∼ 750µs, with an accuracy of about
20µs. This delay variation looks very small compared to the delay (on this
route from France to Australia, packets delays are over 100ms). But for active
probers, it is huge, as we deal with very short events, like packet service times
that are < 100µs on most routers.

We ran some more experiments, replacing ICMP Echo Reply probes by
ICMP Time Exceeded or Echo Request probes. We obtained similar results,
which encourages us to believe that different types of ICMP have the same de-
lay. Indeed, running the same experiment but comparing Echo Reply and Time
Exceeded instead of Echo Reply and UDP, we obtained traces that looked ex-
actly like the one obtained by comparing identical ICMP Echo Reply probes.
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We did not try other types of ICMP, as we did not implement them in the
package.
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Figure 4.3: Comparison between inter-arrival times of probes sent back-to-back.
Left : pairs of UDP back-to-back probes. Right : pairs of ICMP Echo Reply
back-to-back probes.

We also tried to send back-to-back pairs of ICMP Echo Reply probes and
back-to-back pairs of UDP probes to see if back-to-back ICMP probe pairs could
encounter more spacing than their UDP clones. The results are shown in Fig
4.3. We see that ICMP pairs were indeed more spaced than UDP ones. This
implies that ICMP excess delay may be bigger for an ICMP probe sent just
after another ICMP probe.

Last but not least, we wanted to estimate the packet size dependance of the
ICMP excess delay. So, we ran the same experiments, but with bigger probes.
We were careful to keep the sizes of UDP and ICMP identical, as different sizes
will cause additional delay variation. (The bigger as packet is, the longer it
takes to be serviced at each router). The results are shown in Fig 4.4

Size (bytes) Excess delay (µs)
56 760
400 990
800 1225
1200 1460
1500 1620
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Figure 4.4: Packet size dependance of the ICMP excess delay

4.1.2 Larger Experiments

Now, we wanted to check if our route was a very particular case or if ICMP had
extra delaying everywhere. We had to change the experimental methodology,
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since we cannot afford enough hosts around the world to run experiments that
require the control of both sender and receiver. To get rid of the receiver, we
used the following trick : instead of sending direct probes, we sent hop-limited
probes. When they arrive at the chosen router, the hop-limited packets (UDP
or ICMP Echo Reply) will generate an ICMP Time Exceeded, and it seems very
reasonable to suppose that the time taken by the ICMP-TE to return to our
sender is the same if they come from a UDP probe or from an ICMP probe.
It seems also reasonable to assume that the ICMP-TE generation time is the
same for UDP probes and for ICMP probes. So, if we assume that, and consider
the sender as the receiver (the round-trip-times will be the delays), the delay
variation between UDP and ICMP probes should come from the first part of
their trip, i.e. from a delay variation in the transmission between the sender and
the receiver.

Now, we can set an experimental methodology : we pick a random host X
somewhere on the Internet, and run traceroute to obtain the addresses of all the
routers on the route from us to X (for more details about the famous traceroute,
see [11]). If the route is composed of N+1 hops (N routers, plus the host X), we
send probes to X with a TTL of N, so that the very last router, just before X,
will drop our probes and send us the ICMP-TE. All this is represented in Fig
4.5.

Hop−limited UDP

Hop #1

Hop−limited ICMP

ICMP−TE

ICMP−TE

Sender Hop #d−2 Hop #d−1 Destination

Figure 4.5: Probes sent to estimate the delay variation between UDP and ICMP
on a route where we don’t control the destination host

We ran this experiment on 18 international routes, all from CUBIN to a
random host. The host were www servers from different countries :8 in Weastern
Europe, 1 in Russia, 2 in Oceania, 1 in Africa, 3 in the US and 3 in Asia. The
results were following :

• On six routes, the targeted router did not send an ICMP-TE when he
dropped our ICMP Echo Reply probes. So, we had to shorten the route
to pick the last router who did.

• On 14 of the 18 routes, we couldn’t see any difference between ICMP
delays and UDP delays : it seems that our route was indeed peculiar, and
that in most of the routes there is no difference between UDP and ICMP.

• However, on 4 of the 18 routes (3 to Europe and one in Oceania), we could
observe a significant delay variation : on two of them, ICMP probes were
250µs slower than UDP, and on two others, this extra delay reached 1ms.

We are not able to exhibit a nice model or more detailled results that could
allow us to understand this phenomenon. This could come from router optimized
for TCP and UDP in which ICMP takes a slower path. It could also come from a
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route change, but the low difference obtained did not encourage this hypothesis.
However, it would be easy to check that ICMP and UDP take the same route,
by writing a traceroute clone that would send ICMP Echo Reply instead of UDP
packets, and comparing the outputs with the original traceroute. But we didn’t
do it. The only reliable results that came out from this study are :

• On Some routes, ICMP packets are slightly slower than UDP packets.
Even if it seldom happens, any active prober must be aware of that.

• However, different types of ICMP seem to be identically processed. But
this should be checked for any experiment involving different kinds of
ICMP probes.

We did not have enough time to run the other experiments described above
(such as packet size dependance, or back-to-back probes spacing). That’s also
the reason why we have results on so few routes. But getting some accurate
measures was not the goal of this project : we only wanted to explore the various
possibilities that ICMP offers, as well as the difficulties that active probers may
encounter in using ICMP in their experiments.

4.2 ICMP generation time

Althought the few techniques presented in chapter 3 all involved ICMP gen-
eration, and needed the ICMP generation times to be known, we have let the
topic of ICMP generation time alone so far. But it is understandable since we
couldn’t really design a reliable experiment to measure this generation time, as
long as we didn’t know what was going on with ICMP. Now that we are aware
of the necessity to be very careful, we might be able to design an experiment
whose results we can trust.

4.2.1 ICMP Time Exceeded

The ICMP Time Exceeded generation time has been the topic of a much longer
study ([7]), done by Ramesh Govindan and Vern Paxson in the year 2001. They
sent independant streams of spoofed hop-limited ICMP Echo Reply and direct
ICMP Echo Reply probes, as shown in Fig 4.4. Since probes all had the same
size (56 bytes), if we assume that ICMP Echo reply are forwarded exactly as
fast as ICMP Time Exceeded, the delay variation δ comes only from the ICMP-
TE generation time g : on average, δ = g. For every router, they did several
measurements of δ, and then took the median delay variation as an estimate for
the ICMP-TE generation time. They obtained results for 200 routers.

In their results, a few things were quite encouraging for the fate of the
methods described in chapter 3 :

• Although they used spoofing, it seems that they didn’t have problem to
run experiments on lots of routers.

• The ICMP-TE generation times they obtained were mostly smaller than
1ms (for 80% of the routers), and half of them were even smaller than
300µs. This let us hope that the ICMP generation time could match the
service time of one probe, or at least of a couple of probes (otherwise, the
reordering signature described in section 3.1 couldn’t work).
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• They also ran a few experiments with back-to-back probes. They obtained
a high reordering ratio of 81%. At least we are now sure that artificial
reordering is possible on most of the routes (at least 81%).

Since they did not mention anything about the dispersion of the ICMP-
TE generation time for a single router, we had to run a few experiments to
evaluate it. We used the same experimental methodology as Govindan and
Paxson. This methodology was validated by the results obtained in the previous
section : on our route ENS → CUBIN, we knew for sure that ICMP-TE and
ICMP Echo had the same delays (and, therefore, the same route, because it is
statistically very unlikely to obtain identical delays with two different routes).
So, the delay variation can only come from the ICMP-TE generation time. We
could estimate ICMP-TE generation time for 4 routers only (because of the
spoofing protections). The results are shown in table 4.1.

Route Router Gen. Time (µs)
CUBIN → CUBIN CUBINlab Firewall < 5
ENS → CUBIN ENS Gateway 1250
ENS → CUBIN Router #3 ∼ 100
ENS → CUBIN Router #4 −9200
Table 4.1 : ICMP-TE generation times of a few routers

The first three results are consistent with Govindan and Paxson’s work, but
the last one is hard to believe : it shows that if you send a 56-bytes spoofed
ICMP Echo Reply to CUBIN from the ENS, with a TTL set to 4, the 56-bytes
ICMP Time-Exceeded generated by the router #4 will arrive more than 9ms
faster than if we had sent a normal ICMP Echo Reply probe. We cannot be sure
of why this is happening, but it is probably caused by a route change, as shown
in Fig 4.6. This means that spoofing doesn’t always work the way we think it
does : the ICMP-TE answer could actually take another route than the direct
probes. Since Govindan and Paxson didn’t say a word about this, we supposed
it was again a particularity of our route. Anyway, this is again something that
active probers should definitely check, if they use spoofing.

ICMP−TE

Sender Hop A

Hop B

Hop C

Hop D Receiver

direct Probe

hop−limited spoofed Probe

direct Probe

Figure 4.6: ICMP-TE packets that come from spoofed probes could take a
different route than direct probes.

Another thing we would like to know is the packet size dependance of the
ICMP-TE generation time. This is possible, but difficult, because it implies that
we will send probes bigger than 56 bytes. Therefore, the spoofed hop-limited
probe will not have a constant size : it will be big until its “transformation”
in ICMP-TE, and then it will be 56 bytes long. We can actually make the
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ICMP-TE be bigger using the IP header options, but it will add a maximum
of 40 bytes, which is really small compared to the 1500 bytes of the biggest
packets. This non-constant size will causes some delay variation, because the
direct probe has a fixed size, and therefore cannot have the same size as the
hop-limited probe during all the route. We could correct the delay variation
caused by this variable size, using tools like pathchar or methods inspired of it,
but it would increase the experiment’s complexity a lot.

4.2.2 ICMP Echo Request

As described in chapter 3, we can make use of spoofed ICMP Echo Requests
instead of spoofed hop-limited probes. The only difference is that the size of a
spoofed ICMP Echo Request will stay constant, even when it becomes an ICMP
Echo Reply answer generated by the targeted router. Therefore, we can measure
the ICMP Echo Reply generation time exactly as the ICMP-TE generation time,
and we can even evaluate the packet size dependance.

We ran these experiments on the same routers as the ICMP-TE generation
time experiment. The routers #2 and #4 had a generation time < 10µs that
was too small too estimate. The CUBINlab firewall did not answer to our
spoofed Echo Requests. But we had interesting results with the router #3, that
are shown in Fig 4.7. The probe size dependance looks linear, but of course we
won’t assert such a thing with only three points of measurement. The important
thing is that this generation time can actually vary significantly with the probe
size. That confirms the hopes we had in Chapter 3.

Size (bytes) Gen. Time (µs)
56 116
800 130
1500 148

Router #3

E
ch

o 
R

ep
ly

 G
en

er
at

io
n 

T
im

e

Size of all probes

Figure 4.7: Packet size dependance of the ICMP Echo Request generation time
on router #3

Something we didn’t have time to do was to compare the ICMP Echo Request
and Time Exceeded generation time on more routes. The methodology is the
same as for the comparison between UDP and ICMP delays : sending hop-
limited probes and Echo Request, we will receive an ICMP-TE and an Echo
Reply, coming from the same router (if we were smart enough to address the
Echo Request to the router that will drop the hop-limited probe). Then, we
can compare the round-trip times, and the average delay variation should be
what we are looking for : the difference between ICMP-TE generation time and
ICMP Echo Reply generation time.
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4.3 ICMP and Natural Reordering

Natural reordering is the nightmare of any active prober playing with the re-
ordering measurements. Fortunately, it seldom occurs. What we usually call
natural reordering causes only a very small amount of packets to be reordered.
One source of that kind of natural reordering is the multiplicity of links between
two routers, for example to support load sharing. If a link is faster, packets that
take this link could pass packets in the other one. But some strange results
forced us to check if some exceptionnal reordering was happening on one of our
test routes. So, we sent back-to-back UDP probes, on the route ENS → CUBIN
again, looking for reordering. The results were very surprising (two of them are
plotted in Fig 4.8)

• A small (56 bytes) probe sent just after a big one (i.e. > 500 bytes) will
always (i.e. with a probability > 99%) pass it (Fig 4.8, Left).

• A probe almost never (i.e. with a probability < 1%) pass a probe that
is much smaller. But it may pass a probe of equal size (if they are sent
back-to-back) with a probability over 10%.

• A probe, even very small, will almost never (i.e. with a probability < 1%)
pass two probes at a time, even if they are very big (Fig 4.8, Left).

• Many (more than 10 and up to 20) small probes, sent just after a big one,
can all pass it (Fig 4.8, Right).
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Figure 4.8: Two examples of natural reordering. We send groups of back-to-
back probes : one or several 56-bytes probe(s) behind one or two bigger probes.
We make the size of the bigger probe vary. Left : reordering ratios for the two
big probes (i.e. the small probe passing them). Right : reordering ratios for the
16 small probes (i.e. they pass the bigger one).

In fig 4.8, on the right, we can see the ratio of 1, 2, . . . 16 probes passing the
bigger one at the same time.

We didn’t want to analyse these results, since this appeared to be very
specific to our route : none of the few experiments we made on other routes
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exhibit this reordering behaviour. Moreover, the packet size dependance of the
reordering ratios wasn’t easily understandable at all. The only thing we could
have expected is that, the bigger a packet is, the more easy small probes will
pass it. However, we tried to redo these experiments with ICMP packets, and
the results were quite interesting : we had no natural reordering any more, apart
from a very small ratio (less than 1%). This is a nice trick to know, as that
kind of natural reordering make active probing based on reordering much more
difficult.
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Chapter 5

Conclusion

Here, we will present what we learned with ICMP. We first designed quite a
few experiments based on reordering caused by spoofed ICMP. Unfortunately,
we didn’t have time to focus on a given experiment and make it work properly.
But this failures led us to the general study of ICMP behaviour, that appears
to be not exactly what one usually expects. So, we found lots of ICMP speci-
ficities that finally helped us to understand why our first experiment (with the
reordering signature) didn’t work : The combination of ICMP extra delay and
natural reordering made it impossible to work. Now, we would like to sum up
all the tools or methods that could be used for active probing, but also some
difficulties or traps for the active prober.

5.0.1 Traps

• Natural reordering may be a source of big errors when probing the re-
ordering signature.

• ICMP delay might be different than UDP (and probably TCP)

• An ICMP-TE generated by a spoofed hop-limited probe may take another
route than the one we expect.

• ICMP Echo Reply packets do not always generate ICMP-TE answers when
their TTL reach zero. This is also true for UDP, but less likely.

• ICMP back-to-back probes may have more difficulties to stay back-to-back
than UDP probes.

5.0.2 New Methods

• The packet size dependance of ICMP excess delay, or of ICMP Echo Reply
generation time, could give us some information about the router internal
bandwidth (CPU bandwidth ?)

• Reordering signature, with all its variants : spoofed probes or not, ICMP
Time Exceeded or Echo Reply, or both, usage of the packet size dependance
of the Echo Reply generation time . . .
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• UDP packets can pass ICMP packets because of the slower processing
of them in some routers. This could give us another way of creating
reordering.

5.0.3 Future Work

We will have to do a lot of work if we want to try all the methods described above,
especially using the reordering signature, that look very promising because of
its great flexibility. But the first thing to do is to learn more about all the traps
discovered during this project. It has been useful to point out their existence, as
they could all be the sources of great annoyance for the unwarned active prober,
but it would be even more useful to make some larger studies about them.
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