-
Complétez le fichier 2.1.h et implémentez-le dans un fichier 2.1.cc!
// A directed graph is a set of nodes, linked by arcs. Arcs are directed: they
// go from a node to another node.
// In this implementation, each node is an integer in [0, num_nodes-1].
//
// For example, the following graph:
//
// 0 <--- 1 <--> 3 ---> 4
// ^ | \ ^
// | v `----'
// '----- 2
//
// Can be obtained by calling this on a fresh DirectedGraph:
// AddArc(1, 0);
// AddArc(1, 3);
// AddArc(3, 1);
// AddArc(2, 0);
// AddArc(1, 2);
// AddArc(3, 4);
// AddArc(3, 4);
//
class DirectedGraph {
public:
void AddArc(int from, int to);
// Returns 1 + the highest node index that was ever given to AddArc(), as
// 'from' or 'to' argument.
int NumNodes() const;
// Returns the number of arcs originating from "node".
// In the example above, OutDegree(1) = 3, OutDegree(4) = 0.
int OutDegree(int node) const;
// Returns all the destination nodes that were added with arcs
// originating from "node".
// In the example above, Neighbors(1) is {0, 2, 3} and Neighbors(2) is {0}.
const vector<int>& Neighbors(int node) const;
private:
// TODO
};
Testez votre code:
rm 2.tar.gz; wget --no-cache http://fabien.viger.free.fr/cpp/td13/2.tar.gz
tar xf 2.tar.gz
make 2.1
RENDU: 2.1.h, 2.1.cc
-
Implémentez la fonction BFS() décrite dans le fichier 2.2.h:
#include "2.1.h"
// Runs a Breadth-First-Search on the graph, starting from node "src".
// See https://en.wikipedia.org/wiki/Breadth-first_search .
// Returns a vector of size N (N is the number of nodes of the
// graph) representing the "parent" tree: parent[i] is the parent of
// node #i in the BFS tree. The parent of "src" is itself, and the
// parent of a node that wasn't reached by the BFS exploration is -1.
vector<int> BFS(const DirectedGraph& graph, int src);
La complexité devra être O(M + N), où M est le nombre d'arcs et N le nombre de noeuds.
Test: vous devez d'abord faire le 2.3!
make 2.2
RENDU: 2.2.cc
-
Implémentez la fonction GetBfsDistances() décrite dans le fichier 2.3.h:
#include <vector>
using std::vector;
// Extracts the distances of each node in the given BFS tree, which
// is the returned format described in 2.2.h
// Eg. in the following tree, whose root is "2":
//
// .---- 4
// v
// 2 <-- 3 <-- 1
// ^
// '---- 0 <-- 5
//
// The bfs tree is represented by the following 'parent' vector:
// [2, 3, 2, 2, 3, 0]
// And the distance vector should be:
// [1, 2, 0, 1, 2, 2]
//
// If a node was not reached by the BFS, its parent is -1, and its distance
// should also be -1.
vector<int> GetBfsDistances(const vector<int>& bfs_tree);
Test: make 2.3
RENDU: 2.3.cc
-
Implémentez la fonction GetShortestPathFromRootedTree()
décrite dans le fichier 2.4.h:
#include <vector>
using std::vector;
// Returns the shortest path, from the source of a BFS to the given target node.
// The argument is the target node and the BFS "parent" tree.
// If the target node was not reached by the BFS, the returned path should be
// empty.
// Example: using the same example as in 2.3.h, with BFS 'parent' tree:
// [2, 3, 2, 2, 3, 0]
// Then:
// - the shortest path to node #4 should be: [2, 3, 4]
// - the shortest path to node #0 should be: [2, 0]
// - the shortest path to node #5 should be: [2, 0, 5]
// - the shortest path to node #2 should be: [2]
vector<int> GetShortestPathFromRootedTree(const vector<int>& parent, int target);
Test: make 2.4
RENDU: 2.4.cc
-
Copiez 2.1.h et 2.1.cc dans 2.5.h et 2.5.cc,
et modifiez la fonction AddArc() pour qu'elle prenne un argument
supplémentaire: double length.
Modifiez également la fonction Neighbors() pour qu'elle renvoie
un const vector<pair<int, double>>&.
Test: make 2.5
RENDU: 2.5.h et 2.5.cc
-
(**)
Implémentez la fonction Dijkstra()
décrite dans le fichier 2.6.h:
#include "2.5.h"
// Runs a Dijkstra search on the graph, starting from node "src".
// See https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm .
// Returns the same "parent" vector as BFS() in 2.2.h.
vector<int> Dijkstra(const DirectedGraph& graph, int src);
On utilisera priority_queue<> sur une struct
qu'on définira, qui correspond à un noeud du graph associé à sa
distance depuis la source, assorti d'un opérateur <
adapté à ce qu'on en veut pour la priority_queue.
La complexité devra être O(N + M log(M)).
Test: make 2.6
RENDU: 2.6.cc